Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Genes (Basel) ; 12(12)2021 12 14.
Article in English | MEDLINE | ID: mdl-34946933

ABSTRACT

Coat color is a trait of economic significance in horses. Variants in seven genes have been documented to cause white patterning in horses. Of the 34 variants that have been identified in KIT proto-oncogene, receptor tyrosine kinase (KIT), 27 have only been reported in a single individual or family and thus not all are routinely offered for genetic testing. Therefore, to enable proper use of marker-assisted selection, determining breed specificity for these alleles is warranted. Screening 19 unregistered all-white Shetland ponies for 16 white patterning markers identified 14 individuals whose phenotype could not be explained by testing results. In evaluating other known dominant white variants, 14 horses were heterozygous for W13. W13 was previously only reported in two quarter horses and a family of Australian miniature horses. Genotyping known white spotting variants in 30 owner-reported white animals (25 Miniature Horses and five Shetland ponies) identified two additional W13/N American Miniature Horses. The estimated allele frequency of W13 in the American Miniature Horse was 0.0063 (79 N/N, 1 W13/N) and the allele was not detected in a random sample (n = 59) of Shetland ponies. No homozygous W13 individuals were identified and W13/N ponies had a similar all-white coat with pink skin phenotype, regardless of the other white spotting variants present, demonstrating that W13 results in a Mendelian inherited dominant white phenotype and homozygosity is likely lethal. These findings document the presence of W13 in the American Miniature Horse and Shetland pony populations at a low frequency and illustrate the importance of testing for this variant in additional breeds.


Subject(s)
Hair Color/genetics , Horses/genetics , Proto-Oncogene Proteins c-kit/genetics , Alleles , Animals , Biomarkers , Gene Frequency/genetics , Genetic Association Studies , Homozygote , Phenotype , Pigmentation/genetics
3.
J Vet Intern Med ; 35(5): 2473-2485, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34331715

ABSTRACT

BACKGROUND: Equine neuroaxonal dystrophy/equine degenerative myeloencephalopathy (eNAD/EDM) is an inherited neurodegenerative disorder associated with a vitamin E deficiency within the first year of life. Vitamin E consists of 8 isoforms metabolized by the CYP4F2 enzyme. No antemortem diagnostic test currently exists for eNAD/EDM. HYPOTHESIS/OBJECTIVES: Based on the association of α-tocopherol deficiency with the development of eNAD/EDM, we hypothesized that the rate of α-tocopherol, but not γ-tocopherol or tocotrienol metabolism, would be increased in eNAD/EDM-affected horses. ANIMALS: Vitamin E metabolism: Proof of concept (POC) study; eNAD/EDM-affected (n = 5) and control (n = 6) horses. Validation study: eNAD/EDM-affected Quarter Horses (QHs; n = 6), cervical vertebral compressive myelopathy affected (n = 6) horses and control (n = 29) horses. CYP4F2 expression and copy number: eNAD/EDM-affected (n = 12) and age- and sex-matched control (n = 11-12) horses. METHODS: The rates of α-tocopherol/tocotrienol and γ-tocopherol/tocotrienol metabolism were assessed in equine serum (POC and validation) and urine (POC only) using liquid chromatography tandem mass spectrometry (LC-MS/MS). Quantitative reverse-transcriptase PCR (qRT-PCR) and droplet digital (dd)-PCR were used to assay expression and genomic copy number of a CYP4F2 equine ortholog. RESULTS: Metabolic rate of α-tocopherol was increased in eNAD/EDM horses (POC,P < .0001; validation, P = .03), with no difference in the metabolic rate of γ-tocopherol. Horses with eNAD/EDM had increased expression of the CYP4F2 equine orthologue (P = .02) but no differences in copy number. CONCLUSIONS AND CLINICAL IMPORTANCE: Increased α-tocopherol metabolism in eNAD/EDM-affected QHs provides novel insight into alterations in vitamin E processing in eNAD/EDM and highlights the need for high-dose supplementation to prevent the clinical phenotype in genetically susceptible horses.


Subject(s)
Horse Diseases , Neuroaxonal Dystrophies , Animals , Chromatography, Liquid/veterinary , Horses , Neuroaxonal Dystrophies/genetics , Neuroaxonal Dystrophies/veterinary , Tandem Mass Spectrometry/veterinary , Vitamin E , alpha-Tocopherol
5.
Genes (Basel) ; 11(1)2020 01 09.
Article in English | MEDLINE | ID: mdl-31936656

ABSTRACT

Dogs exhibit a wide variety of coat color types, and many genes have been identified that control pigment production, appearance, and distribution. Some breeds, such as the Nova Scotia Duck Tolling Retriever (NSDTR), exhibit variation in pheomelanin pigment intensity that is not explained by known genetic variants. A genome-wide association study comparing light red to dark red in the NSDTR identified a significantly associated region on canine chromosome 15 (CFA 15:23 Mb-38 Mb). Coverage analysis of whole genome sequence data from eight dogs identified a 6 kb copy number variant (CNV) 152 kb upstream of KITLG. Genotyping with digital droplet PCR (ddPCR) confirmed a significant association between an increased copy number with the dark-red coat color in NSDTR (p = 6.1 × 10-7). The copy number of the CNV was also significantly associated with coat color variation in both eumelanin and pheomelanin-based Poodles (p = 1.5 × 10-8, 4.0 × 10-9) and across other breeds. Moreover, the copy number correlated with pigment intensity along the hair shaft in both pheomelanin and eumelanin coats. KITLG plays an important role in melanogenesis, and variants upstream of KITLG have been associated with coat color variation in mice as well as hair color in humans consistent with its role in the domestic dog.


Subject(s)
Dogs/genetics , Hair Color/genetics , Pigmentation/genetics , Animals , Breeding , DNA Copy Number Variations/genetics , Genome-Wide Association Study/methods , Melanins/genetics , Stem Cell Factor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...