Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 10: 29, 2019.
Article in English | MEDLINE | ID: mdl-30800094

ABSTRACT

Axial symptoms emerge in a significant proportion of patients with Parkinson's disease (PD) within 5 years of deep brain stimulation (STN-DBS). Lowering the stimulation frequency may reduce these symptoms. The objectives of the current study were to establish the relationship between gait performance and STN-DBS frequency in chronically stimulated patients with PD, and to identify factors underlying variability in this relationship. Twenty-four patients treated chronically with STN-DBS (>4 years) were studied off-medication. The effect of stimulation frequency (40-140 Hz, 20 Hz-steps, constant energy) on gait was assessed in 6 sessions spread over 1 day. Half of the trials/session involved walking through a narrow doorway. The influence of stimulation voltage was investigated separately in 10 patients. Gait was measured using 3D motion capture and axial symptoms severity was assessed clinically. A novel statistical method established the optimal frequency(ies) for each patient by operating on frequency-tuning curves for multiple gait parameters. Narrowly-tuned optimal frequencies (20 Hz bandwidth) were found in 79% of patients. Frequency change produced a larger effect on gait performance than voltage change. Optimal frequency varied between patients (between 60 and 140 Hz). Contact site in the right STN and severity of axial symptoms were independent predictors of optimal frequency (P = 0.009), with lower frequencies associated with more dorsal contacts and worse axial symptoms. We conclude that gait performance is sensitive to small changes in STN-DBS frequency. The optimal frequency varies considerably between patients and is associated with electrode contact site and severity of axial symptoms. Between-subject variability of optimal frequency may stem from variable pathology outside the basal ganglia.

2.
J Neurophysiol ; 116(2): 493-502, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27098030

ABSTRACT

There is evidence that postural instability associated with Parkinson's disease (PD) is not adequately improved by levodopa, implying involvement of nondopaminergic pathways. However, the mechanisms contributing to postural instability have yet to be fully identified and tested for their levodopa responsiveness. In this report we investigate balance processes that resist external forces to the body when standing. These include in-place responses and the transition to protective stepping. Forward and backward shoulder pulls were delivered using two force-feedback-controlled motors and were randomized for direction, magnitude, and onset. Sixteen patients with PD were tested OFF and ON levodopa, and 16 healthy controls were tested twice. Response behavior was quantified from 3-dimensional ground reaction forces and kinematic measurements of body segments and total body center-of-mass (CoM) motion. In-place responses resisting the pull were significantly smaller in PD as reflected in reduced horizontal anteroposterior ground reaction force and increased CoM displacement. Ankle, knee, and hip moments contributing to this resistance were smaller in PD, with the knee extensor moment to backward pulls being the most affected. The threshold force needed to evoke a step was also smaller for PD in the forward direction. Protective steps evoked by suprathreshold pulls showed deficits in PD in the backward direction, with steps being shorter and more steps being required to arrest the body. Levodopa administration had no significant effect on either in-place or protective stepping deficits. We conclude that processes employed to maintain balance in the face of external forces show impairment in PD consistent with disruption to nondopaminergic systems.


Subject(s)
Parkinson Disease/complications , Parkinson Disease/drug therapy , Postural Balance/physiology , Sensation Disorders/etiology , Aged , Antiparkinson Agents/therapeutic use , Biomechanical Phenomena , Feedback, Physiological/drug effects , Female , Gait/drug effects , Gait/physiology , Humans , Joints/innervation , Levodopa/therapeutic use , Male , Middle Aged , Movement/drug effects , Postural Balance/drug effects , Sensation Disorders/drug therapy
3.
PLoS One ; 11(1): e0146480, 2016.
Article in English | MEDLINE | ID: mdl-26744893

ABSTRACT

BACKGROUND: Huntington's disease patients have a number of peripheral manifestations suggestive of metabolic and endocrine abnormalities. We, therefore, investigated a number of metabolic factors in a 24-hour study of Huntington's disease gene carriers (premanifest and moderate stage II/III) and controls. METHODS: Control (n = 15), premanifest (n = 14) and stage II/III (n = 13) participants were studied with blood sampling over a 24-hour period. A battery of clinical tests including neurological rating and function scales were performed. Visceral and subcutaneous adipose distribution was measured using magnetic resonance imaging. We quantified fasting baseline concentrations of glucose, insulin, cholesterol, triglycerides, lipoprotein (a), fatty acids, amino acids, lactate and osteokines. Leptin and ghrelin were quantified in fasting samples and after a standardised meal. We assessed glucose, insulin, growth hormone and cortisol concentrations during a prolonged oral glucose tolerance test. RESULTS: We found no highly significant differences in carbohydrate, protein or lipid metabolism markers between healthy controls, premanifest and stage II/III Huntington's disease subjects. For some markers (osteoprotegerin, tyrosine, lysine, phenylalanine and arginine) there is a suggestion (p values between 0.02 and 0.05) that levels are higher in patients with premanifest HD, but not moderate HD. However, given the large number of statistical tests performed interpretation of these findings must be cautious. CONCLUSIONS: Contrary to previous studies that showed altered levels of metabolic markers in patients with Huntington's disease, our study did not demonstrate convincing evidence of abnormalities in any of the markers examined. Our analyses were restricted to Huntington's disease patients not taking neuroleptics, anti-depressants or other medication affecting metabolic pathways. Even with the modest sample sizes studied, the lack of highly significant results, despite many being tested, suggests that the majority of these markers do not differ markedly by disease status.


Subject(s)
Huntington Disease/blood , Adult , Aged , Biomarkers/blood , Blood Glucose , Carbohydrate Metabolism , Case-Control Studies , Female , Ghrelin/blood , Human Growth Hormone/blood , Humans , Huntington Disease/pathology , Hydrocortisone/blood , Insulin/blood , Leptin/blood , Lipid Metabolism , Male , Middle Aged
4.
PLoS One ; 10(10): e0138848, 2015.
Article in English | MEDLINE | ID: mdl-26431314

ABSTRACT

BACKGROUND: Huntington's disease is an inherited neurodegenerative disorder characterised by motor, cognitive and psychiatric disturbances. Patients exhibit other symptoms including sleep and mood disturbances, muscle atrophy and weight loss which may be linked to hypothalamic pathology and dysfunction of hypothalamo-pituitary axes. METHODS: We studied neuroendocrine profiles of corticotropic, somatotropic and gonadotropic hypothalamo-pituitary axes hormones over a 24-hour period in controlled environment in 15 healthy controls, 14 premanifest and 13 stage II/III Huntington's disease subjects. We also quantified fasting levels of vasopressin, oestradiol, testosterone, dehydroepiandrosterone sulphate, thyroid stimulating hormone, free triiodothyronine, free total thyroxine, prolactin, adrenaline and noradrenaline. Somatotropic axis hormones, growth hormone releasing hormone, insulin-like growth factor-1 and insulin-like factor binding protein-3 were quantified at 06:00 (fasting), 15:00 and 23:00. A battery of clinical tests, including neurological rating and function scales were performed. RESULTS: 24-hour concentrations of adrenocorticotropic hormone, cortisol, luteinizing hormone and follicle-stimulating hormone did not differ significantly between the Huntington's disease group and controls. Daytime growth hormone secretion was similar in control and Huntington's disease subjects. Stage II/III Huntington's disease subjects had lower concentration of post-sleep growth hormone pulse and higher insulin-like growth factor-1:growth hormone ratio which did not reach significance. In Huntington's disease subjects, baseline levels of hypothalamo-pituitary axis hormones measured did not significantly differ from those of healthy controls. CONCLUSIONS: The relatively small subject group means that the study may not detect subtle perturbations in hormone concentrations. A targeted study of the somatotropic axis in larger cohorts may be warranted. However, the lack of significant results despite many variables being tested does imply that the majority of them do not differ substantially between HD and controls.


Subject(s)
Huntington Disease/physiopathology , Hypothalamo-Hypophyseal System , Adult , Aged , Female , Humans , Hydrocortisone/blood , Male , Middle Aged , Vasopressins/blood
5.
Mov Disord ; 29(12): 1511-5, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25164424

ABSTRACT

This study was undertaken to determine whether the production of melatonin, a hormone regulating sleep in relation to the light/dark cycle, is altered in Huntington's disease. We analyzed the circadian rhythm of melatonin in a 24-hour study of cohorts of control, premanifest, and stage II/III Huntington's disease subjects. The mean and acrophase melatonin concentrations were significantly reduced in stage II/III Huntington's disease subjects compared with controls. We also observed a nonsignificant trend toward reduced mean and acrophase melatonin in premanifest Huntington's disease subjects. Onset of melatonin rise was significantly more temporally spread in both premanifest and stage II/III Huntington's disease subjects compared with controls. A nonsignificant trend also was seen for reduced pulsatile secretion of melatonin. Melatonin concentrations are reduced in Huntington's disease. Altered melatonin patterns may provide an explanation for disrupted sleep and circadian behavior in Huntington's disease, and represent a biomarker for disease state. Melatonin therapy may help the sleep disorders seen in Huntington's disease.


Subject(s)
Huntington Disease/blood , Melatonin/blood , Adult , Aged , Female , Fourier Analysis , Humans , Male , Middle Aged , Severity of Illness Index
6.
Curr Neuropharmacol ; 11(1): 30-40, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23814535

ABSTRACT

The majority of studies investigating the molecular pathogenesis and cell biology underlying dystonia have been performed in individuals with primary dystonia. This includes monogenic forms such as DYT1and DYT6 dystonia, and primary focal dystonia which is likely to be multifactorial in origin. In recent years there has been renewed interest in non-primary forms of dystonia including the dystonia-plus syndromes and heredodegenerative disorders. These are caused by a variety of genetic mutations and their study has contributed to our understanding of the neuronal dysfunction that leads to dystonia These findings have reinforced themes identified from study of primary dystonia including abnormal dopaminergic signalling, cellular trafficking and mitochondrial function. In this review we highlight recent advances in the understanding of the dystonia-plus syndromes and heredodegenerative dystonias.

7.
J Huntingtons Dis ; 2(1): 125-34, 2013.
Article in English | MEDLINE | ID: mdl-25063434

ABSTRACT

BACKGROUND: Huntington's Disease (HD) is a hereditary, progressive neurodegenerative disorder characterised by both neurological and systemic symptoms. In HD, immune changes can be observed before the onset of overt clinical features raising the possibility that inflammatory markers in plasma could be used to track disease progression. It has previously been demonstrated that a widespread, progressive innate immune response is detectable in plasma throughout the course of HD. OBJECTIVE: The aim of the present study was to investigate the potential of several components of inflammation and innate immunity as plasma biomarkers in HD. METHODS: We utilised antibody-based detection technologies as well as mass spectrometric quantification, multiple reaction monitoring (MRM-MS). RESULTS: Levels of several markers previously described as altered in HD, such as clusterin, complement component 4, complement component 9 and α-2 macroglobulin did not differ between healthy controls and HD subjects as measured by Luminex, ELISA or MRM-MS. C-reactive protein was decreased in early HD, while the other immune markers tested were unaltered. CONCLUSIONS: Although only C-reactive protein was found to be reduced in early HD, some of the inflammatory markers measured correlated with clinical measures.


Subject(s)
Biomarkers/blood , Huntington Disease/blood , Huntington Disease/immunology , Inflammation/blood , Adult , Aged , C-Reactive Protein/analysis , C-Reactive Protein/immunology , Chromatography, Liquid , Female , Humans , Inflammation/immunology , Male , Middle Aged , Tandem Mass Spectrometry , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...