Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 11: 1945, 2020.
Article in English | MEDLINE | ID: mdl-32849486

ABSTRACT

Microbiological, molecular ecological, biogeochemical, and isotope geochemical research was carried out at the polar Lake Bol'shie Khruslomeny at the coast of the Kandalaksha Bay, White Sea in March and September 2017. The uppermost mixolimnion was oxic, with low salinity (3-5%). The lower chemocline layer was brown-green colored, with very high content of particulate organic matter (up to 11.8 mg C L-1). The lowermost monimolimnion had marine salinity (22-24%) and very high concentrations of sulfide (up to 18 mmol L-1) and CH4 (up to 1.8 mmol L-1). In the chemocline, total microbial abundance and the rate of anoxygenic photosynthesis were 8.8 × 106 cells mL-1 and 34.4 µmol C L-1 day-1, respectively. Both in March and September, sulfate reduction rate increased with depth, peaking (up to 0.6-1.1 µmol S L-1 day-1) in the lower chemocline. Methane oxidation rates in the chemocline were up to 85 and 180 nmol CH4 L-1 day-1 in March and September, respectively; stimulation of this process by light was observed in September. The percentages of cyanobacteria and methanotrophs in the layer where light-induced methane oxidation occurred were similar, ∼2.5% of the microbial community. Light did not stimulate methane oxidation in deeper layers. The carbon isotope composition of particulate organic matter (δ13C-Corg), dissolved carbonates (δ13C-DIC), and methane (δ13C- CH4) indicated high microbial activity in the chemocline. Analysis of the 16S rRNA gene sequences revealed predominance of Cyanobium cyanobacteria (order Synechococcales) in the mixolimnion. Green sulfur bacteria Chlorobium phaeovibrioides capable of anoxygenic photosynthesis constituted ∼20% of the chemocline community both in March and in September. Methyloprofundus gammaptoteobacteria (family Methylomonaceae) were present in the upper chemocline, where active methane oxidation occurred. During winter, cyanobacteria were less abundant in the chemocline, while methanotrophs occurred in higher horizons, including the under-ice layer. Chemolithotrophic gammaproteobacteria of the genus Thiomicrorhabdus, oxidizing reduced sulfur compounds at low oxygen concentrations, were revealed in the chemocline in March. Both in March and September archaea constituted up to 50% of all microorganisms in the hypolimnion. The percentage of putative methanogens in the archaeal community was low, and they occurred mainly in near-bottom horizons.

2.
Data Brief ; 27: 104722, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31763390

ABSTRACT

The nitritation-anammox process, which involves partial aerobic oxidation of the ammonium to nitrite and following oxidation of ammonium by nitrite to molecular nitrogen, is an efficient and cost-effective approach for biological nitrogen removal from wastewater. To characterize the microbial communities involved in the nitrogen and carbon cycles in wastewater treatment bioreactors employing this process, we sequenced the metagenome of a sludge sample collected from the lab-scale nitritation-anammox sequencing-batch reactor. At the phylum level, Proteobacteria and Chloroflexi were the most numerous groups. Anammox bacteria belonged to the genus Candidatus Brocadia. The obtained data will help to investigate the taxonomical and functional diversity the microbial communities involved in nitritation-anammox process, and will be used for genome-based analysis of uncultured bacterial lineages. The raw sequencing data is available from the NCBI Sequence Read Archive (SRR9831403) database under the BioProject PRJN0A55627.

SELECTION OF CITATIONS
SEARCH DETAIL
...