Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 9(2)2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31973206

ABSTRACT

In this study, declining pistachio rootstocks were detected in newly planted commercial pistachio orchards in Kern County, California. Symptoms were characterized by wilted foliage combined with crown rot in the rootstock. From diseased trees, 42 isolates were obtained, and all had similar cultural and morphological characteristics of Macrophomina phaseolina. Analyses of nucleotide sequences of three gene fragments, the internal transcribed spacer region (ITS1-5.8S-ITS2), partial sequences of ß-tubulin, and translation elongation factor 1-α (TEF1) confirmed this identification, and 20 representative isolates are presented in the phylogenetic study. Testing of Koch's postulates showed that M. phaseolina, when inoculated to stems and roots of the pistachio rootstocks using mycelial plugs or a microsclerotial suspension, is indeed pathogenic to this host. The widely used clonal University of California Berkeley I (UCBI) rootstock appeared highly susceptible to M. phaseolina, suggesting that this pathogen is an emerging threat to the production of pistachio in California. This study confirmed the association of M. phaseolina with the decline of pistachio trees and represents the first description of this fungus as a crown rot-causing agent of pistachio in California.

2.
Plant Dis ; 103(9): 2397-2411, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31322495

ABSTRACT

A survey was conducted during 2015 and 2016 in pistachio orchards throughout the San Joaquin Valley of California to investigate the occurrence of canker diseases and identify the pathogens involved. Cankers and dieback symptoms were observed mainly in orchards aged >15 years. Symptoms of canker diseases included brown to dark brown discoloration of vascular tissues, wood necrosis, and branch dieback. In total, 58 fungal isolates were obtained from cankers and identified based on multilocus phylogenetic analyses (internal transcribed spacer, glyceraldehyde 3-phosphate dehydrogenase, ß-tubulin, calmodulin, actin 1, and translation elongation factor 1α) representing 11 fungal species: Colletotrichum karstii, Cytospora californica, Cytospora joaquinensis, Cytospora parapistaciae, Cytospora pistaciae, Diaporthe ambigua, Didymella glomerata, Diplodia mutila, Neofusicoccum mediterraneum, Phaeoacremonium canadense, and Schizophyllum commune. Pathogenicity tests conducted in the main pistachio cultivars Kerman, Golden Hills, and Lost Hills using the mycelium-plug method indicated that all fungal species were pathogenic to Pistacia vera. All species tested caused cankers in pistachio branches, although virulence among species varied from high to moderate. Overall, N. mediterraneum and Cytospora spp. were the most widespread and virulent species associated with canker diseases of pistachio in California.


Subject(s)
Fungi , Pistacia , Virulence , California , Fungi/pathogenicity , Fungi/physiology , Phylogeny , Pistacia/classification , Pistacia/microbiology , Plant Diseases/microbiology
3.
Plant Dis ; 103(7): 1464-1473, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30998450

ABSTRACT

Colletotrichum Corda, 1831 species are well-documented pathogens of citrus that are associated with leaf and fruit anthracnose diseases. However, their role in twig and shoot dieback diseases of citrus has recently become more prominent. Recent surveys of orchards in the Central Valley of California have revealed C. gloeosporioides and a previously undocumented species, C. karstii, to be associated with twig and shoot dieback. Pathogenicity tests using clementine (cv. 4B) indicated that both C. karstii and C. gloeosporioides are capable of producing lesions following inoculation of citrus stems. Pathogenicity tests also revealed C. karstii to be the most aggressive fungal species producing the longest lesions after 15 months. The majority of spores trapped during this study were trapped during or closely following a precipitation event with the majority of spores being trapped from January through May. These findings confirm C. karstii as a new pathogen of citrus in California.


Subject(s)
Colletotrichum , Virulence , California , Colletotrichum/classification , Colletotrichum/pathogenicity , Colletotrichum/physiology , Plant Diseases/microbiology , Spores, Fungal/isolation & purification
5.
Plant Dis ; 102(7): 1419-1425, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30673557

ABSTRACT

Pistachio (Pistacia vera L.) trees from the National Clonal Germplasm Repository (NCGR) and orchards in California were surveyed for viruses and virus-like agents by high-throughput sequencing (HTS). Analyses of sequence information from 60 trees identified a novel virus, provisionally named "Pistachio ampelovirus A" (PAVA), in the NCGR that showed low amino acid sequence identity (approximately 42%) compared with members of the genus Ampelovirus (family Closteroviridae). A putative viroid, provisionally named "Citrus bark cracking viroid-pistachio" (CBCVd-pis), was also found in the NCGR and showed approximately 87% similarity to Citrus bark cracking viroid (CBCVd, genus Cocadviroid, family Pospiviroidae). Both PAVA and CBCVd-pis were graft transmissible to healthy UCB-1 hybrid rootstock seedlings (P. atlantica × P. integerrima). A field survey of 123 trees from commercial orchards found no incidence of PAVA but five (4%) samples were infected with CBCVd-pis. Of 675 NCGR trees, 16 (2.3%) were positive for PAVA and 172 (25.4%) were positive for CBCVd-pis by reverse-transcription polymerase chain reaction. Additionally, several contigs across multiple samples exhibited significant sequence similarity to a number of other plant virus species in different families. These findings require further study and confirmation. This study establishes the occurrence of viral and viroid populations infecting pistachio trees.


Subject(s)
Closteroviridae/physiology , High-Throughput Nucleotide Sequencing/methods , Pistacia/virology , Plant Diseases/virology , Plant Viruses/physiology , Viroids/physiology , California , Capsid Proteins/genetics , Closteroviridae/classification , Closteroviridae/genetics , Genome, Viral/genetics , Host-Pathogen Interactions , Phylogeny , Pistacia/classification , Plant Viruses/classification , Plant Viruses/genetics , Species Specificity , Viroids/classification , Viroids/genetics
6.
Plant Dis ; 99(11): 1468-1476, 2015 Nov.
Article in English | MEDLINE | ID: mdl-30695969

ABSTRACT

'UCB-1' (Pistacia atlantica × Pistacia integerrima) rootstock is a hybrid cultivar widely used by the U.S. pistachio industry. In the last three years, a large number of micropropagated UCB-1 pistachio rootstocks planted in California and Arizona orchards exhibited shortened internodes, stunted growth, swollen lateral buds, bushy/bunchy growth, stem galls with multiple buds, and twisted roots with minimal lateral branching. Field T-budding success in affected orchards was reduced to approximately 30% with unusual bark cracking often observed around the bud-union. The percentage of abnormal rootstocks within affected orchards varied from 10 to 90%. We have termed the cumulative symptoms "pistachio bushy top syndrome" (PBTS) to describe these affected trees. Two isolates, both containing virulence factors from the phytopathogen Rhodococcus fascians, were identified on symptomatic trees in field and nursery samples. Micropropagated UCB-1 trees inoculated with the Rhodococcus isolates exhibited stunted growth, shortened internode length, swollen lateral buds, sylleptic branching, and differences in root morphology, compared with control UCB-1 trees. To our knowledge, this is the first report of Rhodococcus isolates, related to Rhodococcus fascians, causing disease on a commercial tree crop and the results presented indicate that this organism is responsible at least in part for PBTS in California and Arizona.

SELECTION OF CITATIONS
SEARCH DETAIL
...