Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 10(7)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37508837

ABSTRACT

This work investigates the classification of finger-tapping task images constructed for the initial dip duration of hemodynamics (HR) associated with the small brain area of the left motor cortex using functional near-infrared spectroscopy (fNIRS). Different layers (i.e., 16-layers, 19-layers, 22-layers, and 25-layers) of isolated convolutional neural network (CNN) designed from scratch are tested to classify the right-hand thumb and little finger-tapping tasks. Functional t-maps of finger-tapping tasks (thumb, little) were constructed for various durations (0.5 to 4 s with a uniform interval of 0.5 s) for the initial dip duration using a three gamma functions-based designed HR function. The results show that the 22-layered isolated CNN model yielded the highest classification accuracy of 89.2% with less complexity in classifying the functional t-maps of thumb and little fingers associated with the same small brain area using the initial dip. The results further demonstrated that the active brain area of the two tapping tasks from the same small brain area are highly different and well classified using functional t-maps of the initial dip (0.5 to 4 s) compared to functional t-maps generated for delayed HR (14 s). This study shows that the images constructed for initial dip duration can be helpful in the future for fNIRS-based diagnosis or cortical analysis of abnormal cerebral oxygen exchange in patients.

2.
Article in English | MEDLINE | ID: mdl-37436864

ABSTRACT

The proposed study is based on a feature and channel selection strategy that uses correlation filters for brain-computer interface (BCI) applications using electroencephalography (EEG)-functional near-infrared spectroscopy (fNIRS) brain imaging modalities. The proposed approach fuses the complementary information of the two modalities to train the classifier. The channels most closely correlated with brain activity are extracted using a correlation-based connectivity matrix for fNIRS and EEG separately. Furthermore, the training vector is formed through the identification and fusion of the statistical features of both modalities (i.e., slope, skewness, maximum, skewness, mean, and kurtosis) The constructed fused feature vector is passed through various filters (including ReliefF, minimum redundancy maximum relevance, chi-square test, analysis of variance, and Kruskal-Wallis filters) to remove redundant information before training. Traditional classifiers such as neural networks, support-vector machines, linear discriminant analysis, and ensembles were used for the purpose of training and testing. A publicly available dataset with motor imagery information was used for validation of the proposed approach. Our findings indicate that the proposed correlation-filter-based channel and feature selection framework significantly enhances the classification accuracy of hybrid EEG-fNIRS. The ReliefF-based filter outperformed other filters with the ensemble classifier with a high accuracy of 94.77 ± 4.26%. The statistical analysis also validated the significance (p < 0.01) of the results. A comparison of the proposed framework with the prior findings was also presented. Our results show that the proposed approach can be used in future EEG-fNIRS-based hybrid BCI applications.

3.
Bioengineering (Basel) ; 10(5)2023 May 18.
Article in English | MEDLINE | ID: mdl-37237678

ABSTRACT

Multimodal data fusion (electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS)) has been developed as an important neuroimaging research field in order to circumvent the inherent limitations of individual modalities by combining complementary information from other modalities. This study employed an optimization-based feature selection algorithm to systematically investigate the complementary nature of multimodal fused features. After preprocessing the acquired data of both modalities (i.e., EEG and fNIRS), the temporal statistical features were computed separately with a 10 s interval for each modality. The computed features were fused to create a training vector. A wrapper-based binary enhanced whale optimization algorithm (E-WOA) was used to select the optimal/efficient fused feature subset using the support-vector-machine-based cost function. An online dataset of 29 healthy individuals was used to evaluate the performance of the proposed methodology. The findings suggest that the proposed approach enhances the classification performance by evaluating the degree of complementarity between characteristics and selecting the most efficient fused subset. The binary E-WOA feature selection approach showed a high classification rate (94.22 ± 5.39%). The classification performance exhibited a 3.85% increase compared with the conventional whale optimization algorithm. The proposed hybrid classification framework outperformed both the individual modalities and traditional feature selection classification (p < 0.01). These findings indicate the potential efficacy of the proposed framework for several neuroclinical applications.

4.
Life (Basel) ; 12(12)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36556401

ABSTRACT

Brain tumors are among the deadliest diseases in the modern world. This study proposes an optimized machine-learning approach for the detection and identification of the type of brain tumor (glioma, meningioma, or pituitary tumor) in brain images recorded using magnetic resonance imaging (MRI). The Gaussian features of the image are extracted using speed-up robust features (SURF), whereas its non-linear features are obtained using KAZE, owing to their high performance against rotation, scaling, and noise problems. To retrieve local-level information, all brain MRI images are segmented into an 8 × 8 pixel grid. To enhance the accuracy and reduce the computational time, the variance-based k-means clustering and PSO-ReliefF algorithms are employed to eliminate the redundant features of the brain MRI images. Finally, the performance of the proposed hybrid optimized feature vector is evaluated using various machine learning classifiers. An accuracy of 96.30% is obtained with 169 features using a support vector machine (SVM). Furthermore, the computational time is also reduced to 1 min compared to the non-optimized features used for training of the SVM. The findings are also compared with previous research, demonstrating that the suggested approach might assist physicians and doctors in the timely detection of brain tumors.

5.
Life (Basel) ; 12(7)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35888172

ABSTRACT

Brain tumors reduce life expectancy due to the lack of a cure. Moreover, their diagnosis involves complex and costly procedures such as magnetic resonance imaging (MRI) and lengthy, careful examination to determine their severity. However, the timely diagnosis of brain tumors in their early stages may save a patient's life. Therefore, this work utilizes MRI with a machine learning approach to diagnose brain tumor severity (glioma, meningioma, no tumor, and pituitary) in a timely manner. MRI Gaussian and nonlinear scale features are extracted due to their robustness over rotation, scaling, and noise issues, which are common in image processing features such as texture, local binary patterns, histograms of oriented gradient, etc. For the features, each MRI is broken down into multiple small 8 × 8-pixel MR images to capture small details. To counter memory issues, the strongest features based on variance are selected and segmented into 400 Gaussian and 400 nonlinear scale features, and these features are hybridized against each MRI. Finally, classical machine learning classifiers are utilized to check the performance of the proposed hybrid feature vector. An available online brain MRI image dataset is utilized to validate the proposed approach. The results show that the support vector machine-trained model has the highest classification accuracy of 95.33%, with a low computational time. The results are also compared with the recent literature, which shows that the proposed model can be helpful for clinicians/doctors for the early diagnosis of brain tumors.

6.
Diagnostics (Basel) ; 12(8)2022 Jul 24.
Article in English | MEDLINE | ID: mdl-35892504

ABSTRACT

In today's world, a brain tumor is one of the most serious diseases. If it is detected at an advanced stage, it might lead to a very limited survival rate. Therefore, brain tumor classification is crucial for appropriate therapeutic planning to improve patient life quality. This research investigates a deep-feature-trained brain tumor detection and differentiation model using classical/linear machine learning classifiers (MLCs). In this study, transfer learning is used to obtain deep brain magnetic resonance imaging (MRI) scan features from a constructed convolutional neural network (CNN). First, multiple layers (19, 22, and 25) of isolated CNNs are constructed and trained to evaluate the performance. The developed CNN models are then utilized for training the multiple MLCs by extracting deep features via transfer learning. The available brain MRI datasets are employed to validate the proposed approach. The deep features of pre-trained models are also extracted to evaluate and compare their performance with the proposed approach. The proposed CNN deep-feature-trained support vector machine model yielded higher accuracy than other commonly used pre-trained deep-feature MLC training models. The presented approach detects and distinguishes brain tumors with 98% accuracy. It also has a good classification rate (97.2%) for an unknown dataset not used to train the model. Following extensive testing and analysis, the suggested technique might be helpful in assisting doctors in diagnosing brain tumors.

7.
Comput Intell Neurosci ; 2022: 1575303, 2022.
Article in English | MEDLINE | ID: mdl-35733564

ABSTRACT

In this paper, a novel multistep ahead predictor based upon a fusion of kernel recursive least square (KRLS) and Gaussian process regression (GPR) is proposed for the accurate prediction of the state of health (SoH) and remaining useful life (RUL) of lithium-ion batteries. The empirical mode decomposition is utilized to divide the battery capacity into local regeneration (intrinsic mode functions) and global degradation (residual). The KRLS and GPR submodels are employed to track the residual and intrinsic mode functions. For RUL, the KRLS predicted residual signal is utilized. The online available experimental battery aging data are used for the evaluation of the proposed model. The comparison analysis with other methodologies (i.e., GPR, KRLS, empirical mode decomposition with GPR, and empirical mode decomposition with KRLS) reveals the distinctiveness and superiority of the proposed approach. For 1-step ahead prediction, the proposed method tracks the trajectory with the root mean square error (RMSE) of 0.2299, and the increase of only 0.2243 RMSE is noted for 30-step ahead prediction. The RUL prediction using residual signal shows an increase of 3 to 5% in accuracy. This proposed methodology is a prospective approach for an efficient battery health prognostic.


Subject(s)
Algorithms , Lithium , Electric Power Supplies , Normal Distribution
8.
iScience ; 24(11): 103286, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34765915

ABSTRACT

A data-driven approach is developed to predict the future capacity of lithium-ion batteries (LIBs) in this work. The empirical mode decomposition (EMD), kernel recursive least square tracker (KRLST), and long short-term memory (LSTM) are used to derive the proposed approach. First, the LIB capacity data is split into local regeneration and monotonic global degradation using the EMD approach. Next, the KRLST is used to track the decomposed intrinsic mode functions, and the residual signal is predicted using the LSTM sub-model. Finally, all the predicted intrinsic mode functions and the residual are ensembled to get the future capacity. The experimental and comparative analysis validates the high accuracy (RMSE of 0.00103) of the proposed ensemble approach compared to Gaussian process regression and LSTM fused model. Furthermore, two times lesser error than other fused models makes this approach an efficient tool for battery health prognostics.

9.
Sensors (Basel) ; 21(16)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34451108

ABSTRACT

Defective PV panels reduce the efficiency of the whole PV string, causing loss of investment by decreasing its efficiency and lifetime. In this study, firstly, an isolated convolution neural model (ICNM) was prepared from scratch to classify the infrared images of PV panels based on their health, i.e., healthy, hotspot, and faulty. The ICNM occupies the least memory, and it also has the simplest architecture, lowest execution time, and an accuracy of 96% compared to transfer learned pre-trained ShuffleNet, GoogleNet, and SqueezeNet models. Afterward, ICNM, based on its advantages, is reused through transfer learning to classify the defects of PV panels into five classes, i.e., bird drop, single, patchwork, horizontally aligned string, and block with 97.62% testing accuracy. This proposed approach can identify and classify the PV panels based on their health and defects faster with high accuracy and occupies the least amount of the system's memory, resulting in savings in the PV investment.


Subject(s)
Diagnostic Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...