Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Photochem Photobiol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961565

ABSTRACT

Here, we report a novel kind of protein nanoparticles of 11 nm in size, which have a central protein core surrounded by two layers of lipid. One layer of the lipid was covalently attached to the protein, while the other layer has been physically assembled around the protein core. Particle synthesis is highly modular, while both the size and charge of the protein nanoparticles are controlled in a predictable manner. Circular dichroism studies of the conjugate showed that the protein secondary structure is retained, while biophysical characterizations indicated the particle purity, size, and charge. The conjugate had a high thermal stability to steam sterilization conditions at 121°C (17 psi). After labeling the protein core with few different fluorescent dyes, they were strongly fluorescent with the corresponding colors independent of their size, unlike quantum dots. They are readily digested by proteases, and these water-soluble, non-toxic, highly stable, biocompatible, and biodegradable conjugates are suitable for cell imaging and drug delivery applications.

2.
ACS Omega ; 8(24): 21358-21376, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37360447

ABSTRACT

Graphene quantum dots (GQDs) are carbon-based, zero-dimensional nanomaterials and unique due to their astonishing optical, electronic, chemical, and biological properties. Chemical, photochemical, and biochemical properties of GQDs are intensely being explored for bioimaging, biosensing, and drug delivery. The synthesis of GQDs by top-down and bottom-up approaches, their chemical functionalization, bandgap engineering, and biomedical applications are reviewed here. Current challenges and future perspectives of GQDs are also presented.

3.
Methods Mol Biol ; 2487: 205-225, 2022.
Article in English | MEDLINE | ID: mdl-35687239

ABSTRACT

This chapter reports a single-step preparation of nanoarmored bi-enzyme systems assembled on 1-D and 2-D nanomaterials, with glucose oxidase and peroxidase enzymes as model systems for cascade bio-catalysis. This is a simple and facile method to both exfoliate the bulk 1D (carbon nanotubes, CNT) and 2D nanomaterials (α-Zirconium phosphate, α-ZrP) and bind the enzymes in a single step. Exfoliation of the bulk material enhances the accessible surface area of the materials for the enzyme binding, and it also boosts the diffusion of reagents from the bulk phase to the active sites of the bio-catalysts. For example, a mixture of horseradish peroxidase, glucose oxidase, and bovine serum albumin (BSA) were adsorbed on the surfaces of the α-ZrP nanoplates or carbon nanotubes (CNT) as the bulk materials are exfoliated simultaneously, in a one-step process. The resulting bio-catalysts were thoroughly characterized by powder X-ray diffraction, electron microscopy, biochemical and biophysical methods, while enzyme activity studies proved successful binding of enzymes with retention of activities or even enhancements in their specific activities. For example, GOx/HRP/BSA/CNT displayed 6 times the activity of a mixture of GOx/HRP/BSA, under otherwise identical conditions. Similarly, GOx/HRP/BSA/ZrP had 3.5 times the activity of the corresponding mixture of GOx/HRP/BSA, in the absence of the nanoplates. These robust nano-dispersions worked extraordinarily well as active bio-catalysts. These two kinds of fabricated biocatalyst dispersions are also highly stable.


Subject(s)
Glucose Oxidase , Nanotubes, Carbon , Catalysis , Enzymes, Immobilized/chemistry , Glucose Oxidase/chemistry , Horseradish Peroxidase/chemistry , Serum Albumin, Bovine/chemistry
4.
Biomacromolecules ; 23(1): 196-209, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34964619

ABSTRACT

In cells, actin and tubulin polymerization is regulated by nucleation factors, which promote the nucleation and subsequent growth of protein filaments in a controlled manner. Mimicking this natural mechanism to control the supramolecular polymerization of macromolecular monomers by artificially created nucleation factors remains a largely unmet challenge. Biological nucleation factors act as molecular scaffolds to boost the local concentrations of protein monomers and facilitate the required conformational changes to accelerate the nucleation and subsequent polymerization. An accelerated assembly of synthetic poly(l-glutamic acid) into amyloid fibrils catalyzed by cationic silica nanoparticle clusters (NPCs) as artificial nucleation factors is demonstrated here and modeled as supramolecular polymerization with a surface-induced heterogeneous nucleation pathway. Kinetic studies of fibril growth coupled with mechanistic analysis demonstrate that the artificial nucleators predictably accelerate the supramolecular polymerization process by orders of magnitude (e.g., shortening the assembly time by more than 10 times) when compared to the uncatalyzed reaction, under otherwise identical conditions. Amyloid-like fibrillation was supported by a variety of standard characterization methods. Nucleation followed a Michaelis-Menten-like scheme for the cationic silica NPCs, while the corresponding anionic or neutral nanoparticles had no effect on fibrillation. This approach shows the effectiveness of charge-charge interactions and surface functionalities in facilitating the conformational change of macromolecular monomers and controlling the rates of nucleation for fibril growth. Molecular design approaches like these inspire the development of novel materials via biomimetic supramolecular polymerizations.


Subject(s)
Amyloid , Peptides , Amyloid/chemistry , Amyloidogenic Proteins , Kinetics , Peptides/chemistry , Polymerization
5.
Nanomedicine (Lond) ; 16(22): 1963-1982, 2021 09.
Article in English | MEDLINE | ID: mdl-34431318

ABSTRACT

Aim: To differentiate mesenchymal stem cells into functional dopaminergic neurons using an electrospun polycaprolactone (PCL) and graphene (G) nanocomposite. Methods: A one-step approach was used to electrospin the PCL nanocomposite, with varying G concentrations, followed by evaluating their biocompatibility and neuronal differentiation. Results: PCL with exiguous graphene demonstrated an ideal nanotopography with an unprecedented combination of guidance stimuli and substrate cues, aiding the enhanced differentiation of mesenchymal stem cells into dopaminergic neurons. These newly differentiated neurons were seen to exhibit unique neuronal arborization, enhanced intracellular Ca2+ influx and dopamine secretion. Conclusion: Having cost-effective fabrication and room-temperature storage, the PCL-G nanocomposites could pave the way for enhanced neuronal differentiation, thereby opening a new horizon for an array of applications in neural regenerative medicine.


Subject(s)
Graphite , Mesenchymal Stem Cells , Nanocomposites , Nanofibers , Cell Differentiation , Humans , Polyesters , Tissue Engineering , Tissue Scaffolds
6.
Sci Rep ; 10(1): 7074, 2020 04 27.
Article in English | MEDLINE | ID: mdl-32341425

ABSTRACT

Graphene quantum dots (GQDs) are an allotrope of carbon with a planar surface amenable to functionalization and nanoscale dimensions that confer photoluminescence. Collectively, these properties render GQDs an advantageous platform for nanobiotechnology applications, including optical biosensing and delivery. Towards this end, noncovalent functionalization offers a route to reversibly modify and preserve the pristine GQD substrate, however, a clear paradigm has yet to be realized. Herein, we demonstrate the feasibility of noncovalent polymer adsorption to GQD surfaces, with a specific focus on single-stranded DNA (ssDNA). We study how GQD oxidation level affects the propensity for polymer adsorption by synthesizing and characterizing four types of GQD substrates ranging ~60-fold in oxidation level, then investigating noncovalent polymer association to these substrates. Adsorption of ssDNA quenches intrinsic GQD fluorescence by 31.5% for low-oxidation GQDs and enables aqueous dispersion of otherwise insoluble no-oxidation GQDs. ssDNA-GQD complexation is confirmed by atomic force microscopy, by inducing ssDNA desorption, and with molecular dynamics simulations. ssDNA is determined to adsorb strongly to no-oxidation GQDs, weakly to low-oxidation GQDs, and not at all for heavily oxidized GQDs. Finally, we reveal the generality of the adsorption platform and assess how the GQD system is tunable by modifying polymer sequence and type.


Subject(s)
DNA, Single-Stranded/chemistry , Graphite/chemistry , Molecular Dynamics Simulation , Quantum Dots/chemistry , Fluorescence
7.
Methods Enzymol ; 630: 407-430, 2020.
Article in English | MEDLINE | ID: mdl-31931996

ABSTRACT

In this chapter, we report a simple and facile method to armor enzymes with carbon nanotubes (CNTs) which are exfoliated, and debundled using bovine serum albumin (BSA). The fabricated CNT/BSA dispersions are biofriendly, biocompatible, defect-free, and highly stable solutions. BSA gives maximum exfoliation efficiency, exceeding the 4mg/mL of CNT concentration compared to any previous reports. Further, the produced bioCNT dispersions were characterized by UV-visible, Raman, circular dichroism spectroscopy, and scanning electron microscopy (SEM). Exfoliation and debundling of the bioCNT dispersions is possible due to the π-π interaction, hydrogen bonding, hydrophobic interaction, and electrostatic attractive forces driving the adsorption of BSA on CNTs surface. Protein adsorption then makes a highly stable suspension in water that can be stored for a prolonged period. CNT dispersions are stable over a wide range of pH from 3 to 10 and at 4°C or 25°C for more than 2 months. Here, we also report the facile, inexpensive and green-chemistry method to fabricate a buckypaper (CNT paper), composed of the high packing density, self-assembled and randomly oriented bioCNTs, and these assemblies could be used in many emerging applications like air and water purification, nanocomposites, energy storage, and biosensing. Moreover, the CNT dispersions stabilized by BSA were successfully used in enzyme binding and kinetic studies and bound enzyme retained substantial catalytic activity. The current approach may facilitate bulk production of water dispersed CNTs in both academic and industrial laboratories. This is done by a simple method of stirring, which provides new opportunities for a wider range of CNT applications.


Subject(s)
Enzymes, Immobilized/chemistry , Nanotubes, Carbon/chemistry , Adsorption , Animals , Biocatalysis , Biosensing Techniques/methods , Cattle , Horseradish Peroxidase/chemistry , Kinetics , Serum Albumin, Bovine/chemistry , Solubility , Water/chemistry
8.
Methods Enzymol ; 609: 335-354, 2018.
Article in English | MEDLINE | ID: mdl-30244796

ABSTRACT

Graphene and its derivatives having at least one dimension in nanoscale range have attracted tremendous attention in recent years due to their unique electronic, optical, chemical, and mechanical properties. This chapter is about graphene quantum dots (GQDs) that are zero-dimensional graphene derivatives with one to few layers of graphene sheet having size range less than 20nm. This chapter is an overview of synthesis of GQDs by top-down and bottom-up approaches, as well as detailed methods of synthesis of GQDs by acidic oxidation of carbon fibers. Owing to their extremely small size, quantum confinement, edge effect, biocompatibility, low toxicity, photostability as well as water solubility they are excellent candidates for understanding biological systems and cellular processes at the molecular scale. These are also suitable nanomaterials to replace inorganic semiconducting nanoparticles (e.g., CdS, CdSe, ZnS, and Si) which are toxic to biological systems.


Subject(s)
Carbon Fiber/chemistry , Graphite/chemistry , Quantum Dots/chemistry , Acids/chemistry , Graphite/chemical synthesis , Nanostructures/chemistry , Solubility , Water/chemistry
9.
PLoS One ; 12(11): e0187048, 2017.
Article in English | MEDLINE | ID: mdl-29176801

ABSTRACT

Vaccination is a safe and effective approach to prevent deadly diseases. To increase vaccine production, we propose that a mechanical stimulation can enhance protein production. In order to prove this hypothesis, Sf9 insect cells were used to evaluate the increase in the expression of a fusion protein from hepatitis B virus (HBV S1/S2). We discovered that the ultrasound stimulation at a frequency of 1.5 MHz, intensity of 60 mW/cm2, for a duration of 10 minutes per day increased HBV S1/S2 by 27%. We further derived a model for transport through a cell membrane under the effect of ultrasound waves, tested the key assumptions of the model through a molecular dynamics simulation package, NAMD (Nanoscale Molecular Dynamics program) and utilized CHARMM force field in a steered molecular dynamics environment. The results show that ultrasound waves can increase cell permeability, which, in turn, can enhance nutrient / waste exchange thus leading to enhanced vaccine production. This finding is very meaningful in either shortening vaccine production time, or increasing the yield of proteins for use as vaccines.


Subject(s)
Hepatitis B Vaccines/biosynthesis , Ultrasonic Waves , 4-Chloro-7-nitrobenzofurazan/analogs & derivatives , 4-Chloro-7-nitrobenzofurazan/metabolism , Animals , Blotting, Western , Cell Membrane Permeability , Deoxyglucose/analogs & derivatives , Deoxyglucose/metabolism , Hepatitis B Vaccines/immunology , Molecular Dynamics Simulation , Phosphatidylcholines/chemistry , Proteins/metabolism , Sf9 Cells , Sonication , Thermodynamics
10.
ACS Appl Mater Interfaces ; 9(40): 34915-34926, 2017 Oct 11.
Article in English | MEDLINE | ID: mdl-28921953

ABSTRACT

A novel assembly of a photocathode and a photoanode is investigated to explore their complementary effects in enhancing the photovoltaic performance of a quantum-dot solar cell (QDSC). While p-type nickel oxide (NiO) has been used previously, antimony selenide (Sb2Se3) has not been used in a QDSC, especially as a component of a counter electrode (CE) architecture that doubles as the photocathode. Here, near-infrared (NIR) light-absorbing Sb2Se3 nanoparticles (NPs) coated over electrodeposited NiO nanofibers on a carbon (C) fabric substrate was employed as the highly efficient photocathode. Quasi-spherical Sb2Se3 NPs, with a band gap of 1.13 eV, upon illumination, release photoexcited electrons in addition to other charge carriers at the CE to further enhance the reduction of the oxidized polysulfide. The p-type conducting behavior of Sb2Se3, coupled with a work function at 4.63 eV, also facilitates electron injection to polysulfide. The effect of graphene quantum dots (GQDs) as co-sensitizers as well as electron conduits is also investigated in which a TiO2/CdS/GQDs photoanode structure in combination with a C-fabric CE delivered a power-conversion efficiency (PCE) of 5.28%, which is a vast improvement over the 4.23% that is obtained by using a TiO2/CdS photoanode (without GQDs) with the same CE. GQDs, due to a superior conductance, impact efficiency more than Sb2Se3 NPs do. The best PCE of a TiO2/CdS/GQDs-nS2-/Sn2--Sb2Se3/NiO/C-fabric cell is 5.96% (0.11 cm2 area), which, when replicated on a smaller area of 0.06 cm2, is seen to increase dramatically to 7.19%. The cell is also tested for 6 h of continuous irradiance. The rationalization for the channelized photogenerated electron movement, which augments the cell performance, is furnished in detail in these studies.

11.
Phys Chem Chem Phys ; 19(38): 26330-26345, 2017 Oct 04.
Article in English | MEDLINE | ID: mdl-28936513

ABSTRACT

Novel approaches to boost quantum dot solar cell (QDSC) efficiencies are in demand. Herein, three strategies are used: (i) a hydrothermally synthesized TiO2-multiwalled carbon nanotube (MWCNT) composite instead of conventional TiO2, (ii) a counter electrode (CE) that has not been applied to QDSCs until now, namely, tin sulfide (SnS) nanoparticles (NPs) coated over a conductive carbon (C)-fabric, and (iii) a quasi-solid-state gel electrolyte composed of S2-, an inert polymer and TiO2 nanoparticles as opposed to a polysulfide solution based hole transport layer. MWCNTs by virtue of their high electrical conductivity and suitably positioned Fermi level (below the conduction bands of TiO2 and PbS) allow fast photogenerated electron injection into the external circuit, and this is confirmed by a higher efficiency of 6.3% achieved for a TiO2-MWCNT/PbS/ZnS based (champion) cell, compared to the corresponding TiO2/PbS/ZnS based cell (4.45%). Nanoscale current map analysis of TiO2 and TiO2-MWCNTs reveals the presence of narrowly spaced highly conducting domains in the latter, which equips it with an average current carrying capability greater by a few orders of magnitude. Electron transport and recombination resistances are lower and higher respectively for the TiO2-MWCNT/PbS/ZnS cell relative to the TiO2/PbS/ZnS cell, thus leading to a high performance cell. The efficacy of SnS/C-fabric as a CE is confirmed from the higher efficiency achieved in cells with this CE compared to the C-fabric based cells. Lower charge transfer and diffusional resistances, slower photovoltage decay, high electrical conductance and lower redox potential impart high catalytic activity to the SnS/C-fabric assembly for sulfide reduction and thus endow the TiO2-MWCNT/PbS/ZnS cell with a high open circuit voltage (0.9 V) and a large short circuit current density (∼20 mA cm-2). This study attempts to unravel how simple strategies can amplify QDSC performances.

SELECTION OF CITATIONS
SEARCH DETAIL
...