Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Community Genet ; 3(1): 25-33, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22207565

ABSTRACT

Air pollution and subsequent increased oxidative stress have long been recognized as contributing factors for asthma phenotypes. Individual susceptibility to oxidative stress is determined by genetic variations of the antioxidant defence system. In this study, we analysed the association between environmental nitrogen dioxide (NO(2)) exposure and single nucleotide polymorphisms (SNP) in NFE2L2 and KEAP1 genes and their common impact on asthma risk. We genotyped 12 SNPs in a case-control study of 307 patients diagnosed with asthma and 344 controls. NO(2) concentration was collected from the period preceding the development of asthma symptoms. Multiple logistic regression was applied to evaluate the effects of the studied genetic variations on asthma outcomes in interaction with NO(2) exposure. Our data showed that genotypes of rs2588882 and rs6721961 in the regulatory regions of the NFE2L2 gene were inversely associated with infection-induced asthma (odds ratio (OR) = 0.290, p = 0.0015, and OR = 0.437, p = 0.007, respectively). Furthermore, case-only analyses revealed significant differences for these SNPs between asthma patients that lived in modestly or highly polluted environment (OR = 0.43 (0.23-0.82), p = 0.01, and OR = 0.51, p = 0.02, respectively, in a dominant model). In conclusion, our results throw some new light upon the impact of NFE2L2 polymorphisms on infection-induced asthma risk and their effect in gene-environment interactions.

2.
Mol Immunol ; 46(10): 2140-6, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19419768

ABSTRACT

Primary immunodeficiency disorders are a recognized public health problem worldwide. The prototype of these conditions is X-linked agammaglobulinemia (XLA) or Bruton's disease. XLA is caused by mutations in Bruton's tyrosine kinase gene (BTK), preventing B cell development and resulting in the almost total absence of serum immunoglobulins. The genetic profile and prevalence of XLA have not previously been studied in Eastern and Central European (ECE) countries. We studied the genetic and demographic features of XLA in Belarus, Croatia Hungary, Poland, Republic of Macedonia, Romania, Russia, Serbia, Slovenia, and Ukraine. We collected clinical, immunological, and genetic information for 122 patients from 109 families. The BTK gene was sequenced from the genomic DNA of patients with a high susceptibility to infection, almost no CD19(+) peripheral blood B cells, and low or undetectable levels of serum immunoglobulins M, G, and A, compatible with a clinical and immunological diagnosis of XLA. BTK sequence analysis revealed 98 different mutations, 46 of which are reported for the first time here. The mutations included single nucleotide changes in the coding exons (35 missense and 17 nonsense), 23 splicing defects, 13 small deletions, 7 large deletions, and 3 insertions. The mutations were scattered throughout the BTK gene and most frequently concerned the SH1 domain; no missense mutation was detected in the SH3 domain. The prevalence of XLA in ECE countries (total population 145,530,870) was found to be 1 per 1,399,000 individuals. This report provides the first comprehensive overview of the molecular genetic and demographic features of XLA in Eastern and Central Europe.


Subject(s)
Agammaglobulinemia/genetics , Genetic Diseases, X-Linked/genetics , White People/genetics , Agammaglobulinaemia Tyrosine Kinase , Agammaglobulinemia/epidemiology , Cohort Studies , Demography , Europe/epidemiology , Genetic Diseases, X-Linked/epidemiology , Humans , Mutation/genetics , Prevalence , Protein Structure, Tertiary , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...