Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(D1): D442-D455, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37962385

ABSTRACT

Short Linear Motifs (SLiMs) are the smallest structural and functional components of modular eukaryotic proteins. They are also the most abundant, especially when considering post-translational modifications. As well as being found throughout the cell as part of regulatory processes, SLiMs are extensively mimicked by intracellular pathogens. At the heart of the Eukaryotic Linear Motif (ELM) Resource is a representative (not comprehensive) database. The ELM entries are created by a growing community of skilled annotators and provide an introduction to linear motif functionality for biomedical researchers. The 2024 ELM update includes 346 novel motif instances in areas ranging from innate immunity to both protein and RNA degradation systems. In total, 39 classes of newly annotated motifs have been added, and another 17 existing entries have been updated in the database. The 2024 ELM release now includes 356 motif classes incorporating 4283 individual motif instances manually curated from 4274 scientific publications and including >700 links to experimentally determined 3D structures. In a recent development, the InterPro protein module resource now also includes ELM data. ELM is available at: http://elm.eu.org.


Subject(s)
Amino Acid Motifs , Databases, Protein , Eukaryota , Amino Acid Motifs/genetics , Protein Processing, Post-Translational , Proteins/genetics , Proteins/metabolism , Eukaryota/genetics , Internet
2.
Database (Oxford) ; 20232023 10 31.
Article in English | MEDLINE | ID: mdl-37935582

ABSTRACT

Leishmaniasis is a detrimental disease causing serious changes in quality of life and some forms can lead to death. The disease is spread by the parasite Leishmania transmitted by sandfly vectors and their primary hosts are vertebrates including humans. The pathogen penetrates host cells and secretes proteins (the secretome) to repurpose cells for pathogen growth and to alter cell signaling via host-pathogen protein-protein interactions). Here, we present LeishMANIAdb, a database specifically designed to investigate how Leishmania virulence factors may interfere with host proteins. Since the secretomes of different Leishmania species are only partially characterized, we collated various experimental evidence and used computational predictions to identify Leishmania secreted proteins to generate a user-friendly unified web resource allowing users to access all information available on experimental and predicted secretomes. In addition, we manually annotated host-pathogen interactions of 211 proteins and the localization/function of 3764 transmembrane (TM) proteins of different Leishmania species. We also enriched all proteins with automatic structural and functional predictions that can provide new insights in the molecular mechanisms of infection. Our database may provide novel insights into Leishmania host-pathogen interactions and help to identify new therapeutic targets for this neglected disease. Database URL  https://leishmaniadb.ttk.hu/.


Subject(s)
Leishmania , Leishmaniasis , Humans , Animals , Leishmania/genetics , Quality of Life , Leishmaniasis/genetics , Leishmaniasis/metabolism , Leishmaniasis/parasitology , Membrane Proteins
3.
Database (Oxford) ; 2022(2022)2022 03 02.
Article in English | MEDLINE | ID: mdl-35234850

ABSTRACT

The postsynaptic region is the receiving part of the synapse comprising thousands of proteins forming an elaborate and dynamically changing network indispensable for the molecular mechanisms behind fundamental phenomena such as learning and memory. Despite the growing amount of information about individual protein-protein interactions (PPIs) in this network, these data are mostly scattered in the literature or stored in generic databases that are not designed to display aspects that are fundamental to the understanding of postsynaptic functions. To overcome these limitations, we collected postsynaptic PPIs complemented by a high amount of detailed structural and biological information and launched a freely available resource, the Postsynaptic Interaction Database (PSINDB), to make these data and annotations accessible. PSINDB includes tens of thousands of binding regions together with structural features, mediating and regulating the formation of PPIs, annotated with detailed experimental information about each interaction. PSINDB is expected to be useful for various aspects of molecular neurobiology research, from experimental design to network and systems biology-based modeling and analysis of changes in the protein network upon various stimuli. Database URL https://psindb.itk.ppke.hu/.


Subject(s)
Protein Interaction Mapping , Proteins , Databases, Protein , Protein Interaction Maps , Proteins/chemistry
4.
Sci Rep ; 10(1): 17333, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33060664

ABSTRACT

Next-generation sequencing resulted in the identification of a huge number of naturally occurring variations in human proteins. The correct interpretation of the functional effects of these variations necessitates the understanding of how they modulate protein structure. Coiled-coils are α-helical structures responsible for a diverse range of functions, but most importantly, they facilitate the structural organization of macromolecular scaffolds via oligomerization. In this study, we analyzed a comprehensive set of disease-associated germline mutations in coiled-coil structures. Our results suggest an important role of residues near the N-terminal part of coiled-coil regions, possibly critical for superhelix assembly and folding in some cases. We also show that coiled-coils of different oligomerization states exhibit characteristically distinct patterns of disease-causing mutations. Our study provides structural and functional explanations on how disease emerges through the mutation of these structural motifs.


Subject(s)
Genetic Predisposition to Disease , Germ-Line Mutation , Proteins/genetics , High-Throughput Nucleotide Sequencing , Humans , Protein Conformation , Protein Domains , Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...