Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Fertil Steril ; 121(1): 4-11, 2024 01.
Article in English | MEDLINE | ID: mdl-37993053

ABSTRACT

The oocyte, a long-lived, postmitotic cell, is the locus of reproductive aging in women. Female germ cells replicate only during fetal life and age throughout reproductive life. Mechanisms of oocyte aging include the accumulation of oxidative damage, mitochondrial dysfunction, and disruption of proteins, including cohesion. Nobel Laureate Bob Edwards also discovered a "production line" during oogonial replication in the mouse, wherein the last oocytes to ovulate in the adult-derived from the last oogonia to exit mitotic replication in the fetus. On the basis of this, we proposed a two-hit "telomere theory of reproductive aging" to integrate the myriad features of oocyte aging. The first hit was that oocytes remaining in older women traversed more cell cycles during fetal oogenesis. The second hit was that oocytes accumulated more environmental and endogenous oxidative damage throughout the life of the woman. Telomeres (Ts) could mediate both of these aspects of oocyte aging. Telomeres provide a "mitotic clock," with T attrition an inevitable consequence of cell division because of the end replication problem. Telomere's guanine-rich sequence renders them especially sensitive to oxidative damage, even in postmitotic cells. Telomerase, the reverse transcriptase that restores Ts, is better at maintaining than elongating T. Moreover, telomerase remains inactive during much of oogenesis and early development. Oocytes are left with short Ts, on the brink of viability. In support of this theory, mice with induced T attrition and women with naturally occurring telomeropathy suffer diminished ovarian reserve, abnormal embryo development, and infertility. In contrast, sperm are produced throughout the life of the male by a telomerase-active progenitor, spermatogonia, resulting in the longest Ts in the body. In mice, cleavage-stage embryos elongate Ts via "alternative lengthening of telomeres," a recombination-based mechanism rarely encountered outside of telomerase-deficient cancers. Many questions about Ts and reproduction are raised by these findings: does the "normal" T attrition observed in human oocytes contribute to their extraordinarily high rate of meiotic nondisjunction? Does recombination-based T elongation render embryos susceptible to mitotic nondisjunction (and mosaicism)? Can some features of Ts serve as markers of oocyte quality?


Subject(s)
Telomerase , Male , Female , Humans , Mice , Animals , Aged , Telomerase/genetics , Telomerase/metabolism , Semen/metabolism , Reproduction/genetics , Aging/genetics , Oocytes/metabolism , Telomere/genetics
2.
Semin Reprod Med ; 33(6): 389-95, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26629734

ABSTRACT

Reproductive aging involves declines both in oocyte number and developmental capacity. Declining oocyte number alone cannot explain the manifestations of reproductive aging in women. We have proposed the Telomere Theory of Reproductive Aging to explain the complex phenotype found in oocytes from older women. Telomeres are TTAGGG repeats and associated proteins, which form loops at the ends of chromosomes to provide structural and genomic stability. Studies in mice and women show that telomere shortening in oocytes provides a parsimonious explanation for the effects of reproductive aging on oocyte quality. Measurement of polar body telomere length may predict oocyte quality in women undergoing ART.


Subject(s)
Aging/genetics , Cellular Senescence/genetics , Oocytes/metabolism , Reproduction/genetics , Telomere Shortening , Telomere/genetics , Adult , Age Factors , Aging/metabolism , Aging/pathology , Animals , Female , Fertility/genetics , Humans , Infertility, Female/genetics , Infertility, Female/metabolism , Infertility, Female/physiopathology , Infertility, Female/therapy , Middle Aged , Oocytes/pathology , Pregnancy , Reproductive Techniques, Assisted , Telomere/metabolism , Young Adult
3.
J Assist Reprod Genet ; 32(11): 1685-90, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26411311

ABSTRACT

PURPOSE: The effect of age on telomere length heterogeneity in men has not been studied previously. Our aims were to determine the relationship between variation in sperm telomere length (STL), men's age, and semen parameters in spermatozoa from men undergoing in vitro fertilization (IVF) treatment. METHODS: To perform this prospective cross-sectional pilot study, telomere length was estimated in 200 individual spermatozoa from men undergoing IVF treatment at the NYU Fertility Center. A novel single-cell telomere content assay (SCT-pqPCR) measured telomere length in individual spermatozoa. RESULTS: Telomere length among individual spermatozoa within an ejaculate varies markedly and increases with age. Older men not only have longer STL but also have more variable STL compared to younger men. STL from samples with normal semen parameters was significantly longer than that from samples with abnormal parameters, but STL did not differ between spermatozoa with normal versus abnormal morphology. CONCLUSION: The marked increase in STL heterogeneity as men age is consistent with a role for ALT during spermatogenesis. No data have yet reported the effect of age on STL heterogeneity. Based on these results, future studies should expand this modest sample size to search for molecular evidence of ALT in human testes during spermatogenesis.


Subject(s)
DNA/analysis , Single-Cell Analysis/methods , Spermatozoa/physiology , Telomere/genetics , Adult , Cross-Sectional Studies , Humans , Male , Middle Aged , Paternal Age , Prospective Studies , Telomere Homeostasis/genetics
4.
Fertil Steril ; 103(2): 317-22, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25639967

ABSTRACT

The oocyte is the major determinant of embryo developmental competence in women. It delivers half the chromosomal complement to the embryo, but the maternal and paternal genomes are neither symmetrical nor equal in their contributions to embryo fate. Unlike the paternal genome, the maternal genome carries a heavy footprint of parental aging. Indeed, age is the single best predictor of reproductive outcome in women, and the oocyte is the locus of reproductive aging in women. The oocyte transmits not only the mother's nuclear but also her mitochondrial genome to the embryo, and mitochondrial DNA is known to be especially susceptible to aging. Morphological studies of the oocyte and its associated cumulus corona cells provide only marginal value in the assessment of embryo developmental potential. A number of novel technologies, however, have improved the noninvasive assessment of oocyte quality. Moreover, during maturation, the oocyte ejects half its homologous chromosomes into the first polar body and half its chromatids into the second polar body. Polar body DNA is remarkably similar to that of the oocyte, so analysis of polar body DNA provides a window into the oocyte's genome and telomeres, which may enhance prediction of embryo developmental competence.


Subject(s)
Embryonic Development/physiology , Oocytes/growth & development , Oocytes/metabolism , Animals , Cell Cycle/physiology , Female , Humans , Maternal Age , Polar Bodies/physiology , Reproduction/physiology
5.
Biomed Res Int ; 2014: 925121, 2014.
Article in English | MEDLINE | ID: mdl-24719895

ABSTRACT

Telomeres protect and cap linear chromosome ends, yet these genomic buffers erode over an organism's lifespan. Short telomeres have been associated with many age-related conditions in humans, and genetic mutations resulting in short telomeres in humans manifest as syndromes of precocious aging. In women, telomere length limits a fertilized egg's capacity to develop into a healthy embryo. Thus, telomere length must be reset with each subsequent generation. Although telomerase is purportedly responsible for restoring telomere DNA, recent studies have elucidated the role of alternative telomeres lengthening mechanisms in the reprogramming of early embryos and stem cells, which we review here.


Subject(s)
Embryo, Mammalian/metabolism , Ovum/metabolism , Stem Cells/metabolism , Telomere Homeostasis/physiology , Telomere/metabolism , Animals , Embryo, Mammalian/cytology , Female , Humans , Male , Ovum/cytology , Stem Cells/cytology
6.
Proc Natl Acad Sci U S A ; 110(21): E1906-12, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23661059

ABSTRACT

Measurement of telomere length currently requires a large population of cells, which masks telomere length heterogeneity in single cells, or requires FISH in metaphase arrested cells, posing technical challenges. A practical method for measuring telomere length in single cells has been lacking. We established a simple and robust approach for single-cell telomere length measurement (SCT-pqPCR). We first optimized a multiplex preamplification specific for telomeres and reference genes from individual cells, such that the amplicon provides a consistent ratio (T/R) of telomeres (T) to the reference genes (R) by quantitative PCR (qPCR). The average T/R ratio of multiple single cells corresponded closely to that of a given cell population measured by regular qPCR, and correlated with those of telomere restriction fragments (TRF) and quantitative FISH measurements. Furthermore, SCT-pqPCR detected the telomere length for quiescent cells that are inaccessible by quantitative FISH. The reliability of SCT-pqPCR also was confirmed using sister cells from two cell embryos. Telomere length heterogeneity was identified by SCT-pqPCR among cells of various human and mouse cell types. We found that the T/R values of human fibroblasts at later passages and from old donors were lower and more heterogeneous than those of early passages and from young donors, that cancer cell lines show heterogeneous telomere lengths, that human oocytes and polar bodies have nearly identical telomere lengths, and that the telomere lengths progressively increase from the zygote, two-cell to four-cell embryo. This method will facilitate understanding of telomere heterogeneity and its role in tumorigenesis, aging, and associated diseases.


Subject(s)
Blastocyst/metabolism , Polar Bodies/metabolism , Telomere/metabolism , Animals , Blastocyst/cytology , HeLa Cells , Humans , Mice , Polar Bodies/cytology , Polymerase Chain Reaction/methods , Telomere/genetics
7.
Fertil Steril ; 99(1): 23-29, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23273986

ABSTRACT

Telomeres mediate biologic aging in organisms as diverse as plants, yeast, and mammals. We propose a telomere theory of reproductive aging that posits telomere shortening in the female germ line as the primary driver of reproductive aging in women. Experimental shortening of telomeres in mice, which normally do not exhibit appreciable oocyte aging, and which have exceptionally long telomeres, recapitulates the aging phenotype of human oocytes. Telomere shortening in mice reduces synapsis and chiasmata, increases embryo fragmentation, cell cycle arrest, apoptosis, spindle dysmorphologies, and chromosome abnormalities. Telomeres are shorter in the oocytes from women undergoing in vitro fertilization, who then produce fragmented, aneuploid embryos that fail to implant. In contrast, the testes are replete with spermatogonia that can rejuvenate telomere reserves throughout the life of the man by expressing telomerase. Differences in telomere dynamics across the life span of men and women may have evolved because of the difference in the inherent risks of aging on reproduction between men and women. Additionally, growing evidence links altered telomere biology to endometriosis and gynecologic cancers, thus future studies should examine the role of telomeres in pathologies of the reproductive tract.


Subject(s)
Reproduction/physiology , Sex Characteristics , Telomere Homeostasis/physiology , Telomere Shortening/physiology , Telomere/physiology , Animals , Cellular Senescence/physiology , Female , Humans , Male , Mice , Models, Animal , Oocytes/physiology , Spermatozoa/physiology
8.
Aging Cell ; 9(2): 113-25, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20003168

ABSTRACT

Oocytes can reprogram genomes to form embryonic stem (ES) cells. Although ES cells largely escape senescence, oocytes themselves do senesce in the ovaries of most mammals. It remains to be determined whether ES cells can be established using eggs from old females, which exhibit reproductive senescence. We attempted to produce pluripotent stem cell lines from artificial activation of eggs (also called pES) from reproductive aged mice, to determine whether maternal aging affects pES cell production and pluripotency. We show that pES cell lines were generated with high efficiency from reproductive aged (old) mice, although parthenogenetic embryos from these mice produced fewer ES clones by initial two passages. Further, pES cell lines generated from old mice showed telomere length, expression of pluripotency molecular markers (Oct4, Nanog, SSEA1), alkaline phosphatase activity, teratoma formation and chimera production similar to young mice. Notably, DNA damage was reduced in pES cells from old mice compared to their progenitor parthenogenetic blastocysts, and did not differ from that of pES cells from young mice. Also, global gene expression differed only minimally between pES cells from young and old mice, in contrast to marked differences in gene expression in eggs from young and old mice. These data demonstrate that eggs from old mice can generate pluripotent stem cells, and suggest that the isolation and in vitro culture of ES cells must select cells with high levels of DNA and telomere integrity, and/or with capacity to repair DNA and telomeres.


Subject(s)
Aging , Cell Culture Techniques/methods , Oocytes/metabolism , Pluripotent Stem Cells/metabolism , Animals , Biomarkers , Blastocyst/metabolism , Cell Cycle , Cells, Cultured , DNA Damage , Female , Gene Expression Profiling , Gene Expression Regulation , Mice , Oocytes/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...