Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Med ; 221(3)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38289348

ABSTRACT

Outer retinal degenerations, including age-related macular degeneration (AMD), are characterized by photoreceptor and retinal pigment epithelium (RPE) atrophy. In these blinding diseases, macrophages accumulate at atrophic sites, but their ontogeny and niche specialization remain poorly understood, especially in humans. We uncovered a unique profile of microglia, marked by galectin-3 upregulation, at atrophic sites in mouse models of retinal degeneration and human AMD. In disease models, conditional deletion of galectin-3 in microglia led to phagocytosis defects and consequent augmented photoreceptor death, RPE damage, and vision loss, indicating protective roles. Mechanistically, Trem2 signaling orchestrated microglial migration to atrophic sites and induced galectin-3 expression. Moreover, pharmacologic Trem2 agonization led to heightened protection but in a galectin-3-dependent manner. In elderly human subjects, we identified this highly conserved microglial population that expressed galectin-3 and Trem2. This population was significantly enriched in the macular RPE-choroid of AMD subjects. Collectively, our findings reveal a neuroprotective population of microglia and a potential therapeutic target for mitigating retinal degeneration.


Subject(s)
Galectin 3 , Membrane Glycoproteins , Receptors, Immunologic , Retinal Degeneration , Aged , Animals , Humans , Mice , Atrophy , Galectin 3/genetics , Macrophages , Membrane Glycoproteins/genetics , Microglia , Receptors, Immunologic/genetics
2.
bioRxiv ; 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37502831

ABSTRACT

Degenerative diseases of the outer retina, including age-related macular degeneration (AMD), are characterized by atrophy of photoreceptors and retinal pigment epithelium (RPE). In these blinding diseases, macrophages are known to accumulate ectopically at sites of atrophy, but their ontogeny and functional specialization within this atrophic niche remain poorly understood, especially in the human context. Here, we uncovered a transcriptionally unique profile of microglia, marked by galectin-3 upregulation, at atrophic sites in mouse models of retinal degeneration and in human AMD. Using disease models, we found that conditional deletion of galectin-3 in microglia led to defects in phagocytosis and consequent augmented photoreceptor death, RPE damage and vision loss, suggestive of a protective role. Mechanistically, Trem2 signaling orchestrated the migration of microglial cells to sites of atrophy, and there, induced galectin-3 expression. Moreover, pharmacologic Trem2 agonization led to heightened protection, but only in a galectin-3-dependent manner, further signifying the functional interdependence of these two molecules. Likewise in elderly human subjects, we identified a highly conserved population of microglia at the transcriptomic, protein and spatial levels, and this population was enriched in the macular region of postmortem AMD subjects. Collectively, our findings reveal an atrophy-associated specialization of microglia that restricts the progression of retinal degeneration in mice and further suggest that these protective microglia are conserved in AMD.

3.
Med ; 2(6): 755-772.e5, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33870241

ABSTRACT

BACKGROUND: Sexual dimorphisms in immune responses contribute to coronavirus disease 2019 (COVID-19) outcomes, but the mechanisms governing this disparity remain incompletely understood. METHODS: We carried out sex-balanced sampling of peripheral blood mononuclear cells from hospitalized and non-hospitalized individuals with confirmed COVID-19, uninfected close contacts, and healthy control individuals for 36-color flow cytometry and single-cell RNA sequencing. FINDINGS: Our results revealed a pronounced reduction of circulating mucosal-associated invariant T (MAIT) cells in infected females. Integration of published COVID-19 airway tissue datasets suggests that this reduction represented a major wave of MAIT cell extravasation during early infection in females. Moreover, MAIT cells from females possessed an immunologically active gene signature, whereas cells from males were pro-apoptotic. CONCLUSIONS: Our findings uncover a female-specific protective MAIT cell profile, potentially shedding light on reduced COVID-19 susceptibility in females. FUNDING: This work was supported by NIH/NIAID (U01AI066569 and UM1AI104681), the Defense Advanced Projects Agency (DARPA; N66001-09-C-2082 and HR0011-17-2-0069), the Veterans Affairs Health System, and Virology Quality Assurance (VQA; 75N93019C00015). The content is solely the responsibility of the authors and does not necessarily represent the official view of the National Institutes of Health. COVID-19 samples were processed under Biosafety level 2 (BSL-2) with aerosol management enhancement or BSL-3 in the Duke Regional Biocontainment Laboratory, which received partial support for construction from NIH/NIAID (UC6AI058607).


Subject(s)
COVID-19 , Mucosal-Associated Invariant T Cells , Female , Flow Cytometry , Humans , Leukocytes, Mononuclear , Lymphocyte Activation , Male , United States
4.
Sci Rep ; 10(1): 5804, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32242066

ABSTRACT

Elevated intraocular pressure (IOP) narrows Schlemm's canal (SC), theoretically increasing luminal shear stress. Using engineered adenoviruses containing a functional fragment of the shear-responsive endothelial nitric oxide synthase (eNOS) promoter, we tested effects of shear stress and elevated flow rate on reporter expression in vitro and ex vivo. Cultured human umbilical vein endothelial cells (HUVECs) and SC cells were transduced with adenovirus containing eNOS promoter driving secreted alkaline phosphatase (SEAP) or green fluorescent protein (GFP) and subjected to shear stress. In parallel, human anterior segments were perfused under controlled flow. After delivering adenoviruses to the SC lumen by retroperfusion, the flow rate in one anterior segment of pair was increased to double pressure. In response to high shear stress, HUVECs and SC cells expressed more SEAP and GFP than control. Similarly, human anterior segments perfused at higher flow rates released significantly more nitrites and SEAP into perfusion effluent, and SC cells expressed increased GFP near collector channel ostia compared to control. These data establish that engineered adenoviruses have the capacity to quantify and localize shear stress experienced by endothelial cells. This is the first in situ demonstration of shear-mediated SC mechanobiology as a key IOP-sensing mechanism necessary for IOP homeostasis.


Subject(s)
Aqueous Humor/metabolism , Intraocular Pressure , Mechanotransduction, Cellular , Trabecular Meshwork/metabolism , Adenoviridae/genetics , Adenoviridae/metabolism , Aged , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Male , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Nitrites/metabolism , Promoter Regions, Genetic , Stress, Mechanical
5.
Proc Natl Acad Sci U S A ; 116(26): 13087-13096, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31189593

ABSTRACT

Progressive rod-cone degeneration (PRCD) is a small protein residing in the light-sensitive disc membranes of the photoreceptor outer segment. Until now, the function of PRCD has remained enigmatic despite multiple demonstrations that its mutations cause blindness in humans and dogs. Here, we generated a PRCD knockout mouse and observed a striking defect in disc morphogenesis, whereby newly forming discs do not properly flatten. This leads to the budding of disc-derived vesicles, specifically at the site of disc morphogenesis, which accumulate in the interphotoreceptor matrix. The defect in nascent disc flattening only minimally alters the photoreceptor outer segment architecture beyond the site of new disc formation and does not affect the abundance of outer segment proteins and the photoreceptor's ability to generate responses to light. Interestingly, the retinal pigment epithelium, responsible for normal phagocytosis of shed outer segment material, lacks the capacity to clear the disc-derived vesicles. This deficiency is partially compensated by a unique pattern of microglial migration to the site of disc formation where they actively phagocytize vesicles. However, the microglial response is insufficient to prevent vesicular accumulation and photoreceptors of PRCD knockout mice undergo slow, progressive degeneration. Taken together, these data show that the function of PRCD is to keep evaginating membranes of new discs tightly apposed to each other, which is essential for the high fidelity of photoreceptor disc morphogenesis and photoreceptor survival.


Subject(s)
Membrane Proteins/deficiency , Morphogenesis/genetics , Retinal Photoreceptor Cell Outer Segment/pathology , Animals , Cell Membrane/metabolism , Cell Membrane/pathology , Cell-Derived Microparticles/metabolism , Cell-Derived Microparticles/ultrastructure , Cone-Rod Dystrophies/genetics , Cone-Rod Dystrophies/pathology , Cone-Rod Dystrophies/veterinary , Disease Models, Animal , Dogs , Extracellular Space/metabolism , Eye Proteins/genetics , Humans , Membrane Proteins/genetics , Mice , Mice, Knockout , Microscopy, Electron, Transmission , Retinal Photoreceptor Cell Outer Segment/metabolism , Retinal Photoreceptor Cell Outer Segment/ultrastructure , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/pathology
6.
Immunity ; 50(3): 723-737.e7, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30850344

ABSTRACT

Microglia from different nervous system regions are molecularly and anatomically distinct, but whether they also have different functions is unknown. We combined lineage tracing, single-cell transcriptomics, and electrophysiology of the mouse retina and showed that adult retinal microglia shared a common developmental lineage and were long-lived but resided in two distinct niches. Microglia in these niches differed in their interleukin-34 dependency and functional contribution to visual-information processing. During certain retinal-degeneration models, microglia from both pools relocated to the subretinal space, an inducible disease-associated niche that was poorly accessible to monocyte-derived cells. This microglial transition involved transcriptional reprogramming of microglia, characterized by reduced expression of homeostatic checkpoint genes and upregulation of injury-responsive genes. This transition was associated with protection of the retinal pigmented epithelium from damage caused by disease. Together, our data demonstrate that microglial function varies by retinal niche, thereby shedding light on the significance of microglia heterogeneity.


Subject(s)
Homeostasis/physiology , Microglia/pathology , Retinal Degeneration/pathology , Animals , Disease Models, Animal , Epithelium, Corneal/pathology , Female , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Retina/pathology , Up-Regulation/physiology
7.
Sci Transl Med ; 10(451)2018 07 25.
Article in English | MEDLINE | ID: mdl-30045980

ABSTRACT

Meibomian glands (MGs) are sebaceous glands of the eyelid margin that secrete lipids needed to avert tear evaporation and to help maintain ocular surface homeostasis. Obstruction of MGs or other forms of MG dysfunction can promote chronic diseases of the ocular surface. Although chronic eyelid inflammation, such as allergic eye disease, is an associated risk factor for obstructive MG dysfunction, it is not clear whether inflammatory processes contribute to the pathophysiology of MG obstruction. We show that polymorphonuclear neutrophils (PMNs) promoted MG obstruction in a chronic inflammatory model of allergic eye disease in mice. Analysis of leukocytes in tears of patients with MG dysfunction showed an increase in PMN numbers compared to healthy subjects. Moreover, PMN numbers in tears positively correlated with clinical severity of MG dysfunction. Our findings point to a role for PMNs in the pathogenesis and progression of MG dysfunction.


Subject(s)
Eyelid Diseases/immunology , Eyelid Diseases/pathology , Meibomian Glands/immunology , Meibomian Glands/pathology , Sebaceous Glands/immunology , Sebaceous Glands/pathology , Animals , Mice , Mice, Inbred C57BL , Neutrophils/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...