Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nanoscale ; 15(15): 7044-7050, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-36974910

ABSTRACT

The fabrication of one-dimensional (1D) crystalline, monodomain nanocomposite films (hybrid Bragg stacks) is still limited to a few combinations of polymers and clay. The main reason is the segregation of clay and polymers driven by the entropic loss faced by the polymer confined in a narrow slit between the nanosheets. By exchanging synthetic sodium-fluorohectorite with vinylbenzyltrimethylammonium chloride, we succeeded in delaminating clay via 1D dissolution in N-methylformamide to obtain a liquid crystalline suspension. By combining this with bisphenol A glycerolate diacrylate, 1D crystalline nanocomposites could be obtained via photopolymerization of doctor bladed wet coatings. Infrared spectroscopy confirmed the co-polymerization of monomers and the organic modifier between the hectorite platelets. This single-phase hybrid material shows very low oxygen and water vapor transmission rates. The incorporation of the modified clay into the polymer leads to an oxygen transmission rate of 0.21 cm3 m-2 day-1 atm-1 at 50% r.h. and 23 °C and a water vapor transmission rate of 0.05 g m-2 day-1 for a coating of 3.7 µm, making this material appropriate for challenging packaging applications.

2.
Langmuir ; 34(28): 8215-8222, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29924623

ABSTRACT

Delamination by osmotic swelling of layered materials is generally thought to become increasingly difficult, if not impossible, with increasing layer charge density because of strong Coulomb interactions. Nevertheless, for the class of 2:1 layered silicates, very few examples of delaminating organo-vermiculites were reported in literature. We propose a mechanism for this repulsive osmotic swelling of highly charged vermiculites based on repulsive counterion translational entropy that dominates the interaction of adjacent layers above a certain threshold separation. Based on this mechanistic insight, we were able to identify several organic interlayer cations appropriate to delaminate highly charged, vermiculite-type clay minerals. These findings suggest that the osmotic swelling of highly charged organoclays is a generally applicable phenomenon rather than the odd exemption.

3.
Angew Chem Int Ed Engl ; 57(2): 564-568, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29178514

ABSTRACT

Separation of gas molecules with similar physical and chemical properties is challenging but nevertheless highly relevant for chemical processing. By introducing the elliptically shaped molecule, 1,4-dimethyl-1,4-diazabicyclo[2.2.2]octane, into the interlayer space of a layered silicate, a two-dimensional microporous network with narrow pore size distribution is generated (MOPS-5). The regular arrangement of the pillar molecules in MOPS-5 was confirmed by the occurrence of a 10 band related to a long-range pseudo-hexagonal superstructure of pillar molecules in the interlayer space. Whereas with MOPS-5 for CO2 adsorption, gate-opening occurs at constant volume by freezing pillar rotation, for CO the interlayer space is expanded at gate-opening and a classical interdigitated layer type of gate-opening is observed. The selective nature of the gate-opening might be used for separation of CO and N2 by pressure swing adsorption.

4.
Langmuir ; 33(19): 4816-4822, 2017 05 16.
Article in English | MEDLINE | ID: mdl-28452487

ABSTRACT

Because of strong Coulomb interactions, the delamination of charged layered materials becomes progressively more difficult with increasing charge density. For instance, highly charged sodium fluorohectorite (Na0.6Mg2.4Li0.6Si4O10F2, Na-Hec) cannot be delaminated directly by osmotic swelling in water because its layer charge exceeds the established limit for osmotic swelling of 0.55 per formula unit Si4O10F2. Quite surprisingly, we found that this hectorite at the border of the smectite and vermiculite group can, however, be utterly delaminated into 1-nm-thick platelets with a high aspect ratio (24 000) in a two-step process. The hectorite is first converted by partial ion exchange into a one-dimensionally ordered, interstratified heterostructure with strictly alternating Na+ and n-butylammonium (C4) interlayers. This heterostructure then spontaneously delaminates into uniform single layers upon immersion in water whereas neither of the homoionic phases (Na-Hec and C4-Hec) swells osmotically. The delamination of more highly charged synthetic layered silicates is a key step to push the aspect ratio beyond the current limits.

5.
Chem Commun (Camb) ; 53(6): 1072-1075, 2017 Jan 17.
Article in English | MEDLINE | ID: mdl-28044170

ABSTRACT

Adsorption studies in microporous organically pillared layered silicates (MOPS) show that precise control of micropore size in the sub-Ångström range is crucial for chiral discrimination. The highly modular character of MOPS generally allows for an optimization of guest recognition without the need to explore different framework topologies.

6.
J Am Chem Soc ; 139(2): 904-909, 2017 01 18.
Article in English | MEDLINE | ID: mdl-27992224

ABSTRACT

Microporous organically pillared layered silicates (MOPS) are a class of microporous hybrid materials that, by varying pillar density, allows for optimization of guest recognition without the need to explore different framework topologies. MOPS are found to be capable of discriminating two very similar gases, carbon dioxide and acetylene, by selective gate-opening solely through quenching pillar dynamics. Contrary to conventional gate-opening in metal organic frameworks, the additional adsorption capacity is realized without macroscopic volume changes, thus avoiding mechanical stress on the framework. Of the two gases studied, only CO2 can accomplish freezing of pillar dynamics. Moreover, the shape of the slit-type micropores in MOPS can easily be fine-tuned by reducing the charge density of the silicate layers. This concomitantly reduces the Coulomb attraction of cationic interlayer space and anionic host layers. Surprisingly, we found that reducing the charge density then alters the gate-opening mechanism to a conventional structural gate-opening involving an increase in volume.

7.
Angew Chem Int Ed Engl ; 55(26): 7398-402, 2016 06 20.
Article in English | MEDLINE | ID: mdl-27140654

ABSTRACT

Ordered heterostructures of layered materials where interlayers with different reactivities strictly alternate in stacks offer predetermined slippage planes that provide a precise route for the preparation of bilayer materials. We use this route for the synthesis of a novel type of reinforced layered silicate bilayer that is 15 % stiffer than the corresponding monolayer. Furthermore, we will demonstrate that triggering cleavage of bilayers by osmotic swelling gives access to a generic toolbox for an asymmetrical modification of the two vis-à-vis standing basal planes of monolayers. Only two simple steps applying arbitrary commercial polycations are needed to obtain such Janus-type monolayers. The generic synthesis route will be applicable to many other layered compounds capable of osmotic swelling, rendering this approach interesting for a variety of materials and applications.

8.
Angew Chem Int Ed Engl ; 54(16): 4963-7, 2015 Apr 13.
Article in English | MEDLINE | ID: mdl-25703020

ABSTRACT

A novel approach is presented for the encapsulation of organic functional molecules between two sheets of 1 nm thin silicate layers, which like glass are transparent and chemically stable. An ordered heterostructure with organic interlayers strictly alternating with osmotically swelling sodium interlayers can be spontaneously delaminated into double stacks with the organic interlayers sandwiched between two silicate layers. The double stacks show high aspect ratios of >1000 (typical lateral extension 5000 nm, thickness 4.5 nm). This newly developed technique can be used to mask hydrophobic functional molecules and render them completely dispersible in water. The combination of the structural anisotropy of the silicate layers and a preferred orientation of molecules confined in the interlayer space allows polymer nanocomposite films to be cast with a well-defined orientation of the encapsulated molecules, thus rendering the optical properties of the nanocoatings anisotropic.

10.
Langmuir ; 29(4): 1280-5, 2013 Jan 29.
Article in English | MEDLINE | ID: mdl-23286394

ABSTRACT

Applying a combination of melt synthesis followed by long-term annealing a fluorohectorite is obtained which is unique with respect to homogeneity, purity, and particle size. Counterintuitively, the hectorite undergoes a disorder-to-order transition upon swelling to the level of the bilayer hydrate. Alkylammonium-exchanged samples show at any chain length only a single basal spacing corroborating a nicely homogeneous layer charge density. Its intracrystalline reactivity improves greatly upon annealing, making it capable to spontaneously and completely disintegrate into single clay lamellae of 1 nm thickness. Realizing exceptional aspect ratios of around 20,000 upon delamination, this synthetic clay will offer unprecedented potential as functional filler in highly transparent nanocomposites with superior gas barrier and mechanical properties.

11.
Langmuir ; 28(41): 14713-9, 2012 Oct 16.
Article in English | MEDLINE | ID: mdl-23009211

ABSTRACT

A F-rich potassium hectorite, [K(0.48(2))](inter)[Mg(2.54(8))Li(0.43)](oct)[Si(4)](tet)O(10)F(2), with a layer charge of x = 0.48 per formula unit (pfu) was synthesized by high temperature melt synthesis. After Mg-exchange, the layer charge could be reduced significantly post synthesis by annealing (250 °C) as confirmed by alkylammonium exchange and cation exchange capacity. By pillaring this new low charge material with Me(2)DABCO(2+) (N,N-dimethyl-1,1-diazabicyclo [2.2.2]octane dication) and Rh(bpy)(3)(3+) (rhodium-tris-2,2'-bipyridin trication), we observed a remarkable increase in micropore volume and pore diameter by Ar/Ar(l) physisorption measurements. This method allows the tailoring of pore sizes of pillared clays by reducing the layer charge and consequently the pillar density.

12.
Nanoscale ; 4(18): 5633-9, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22865040

ABSTRACT

Melt-synthesis yielded lithium-fluorohectorites (Li-hect(x)) with variable layer charge (x = 0.4, 0.6, 0.8, 1.0). Counterintuitively, both tactoid diameter and intracrystalline reactivity increased concomitantly with increasing layer charge. This way hectorites with very large diameters were obtained (d(50%) = 48 µm) that nevertheless still spontaneously delaminate when immersed into water and nano-platelets with huge aspect ratios (>10 000) are formed. Melt-synthesis of Li-hect(x) has been performed in an open glassy carbon crucible allowing for easy scaling to batches of 500 g. These unprecedented huge aspect ratio fillers promise great potential for flame retardants and barrier applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...