Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Kidney Int ; 100(6): 1227-1239, 2021 12.
Article in English | MEDLINE | ID: mdl-34537228

ABSTRACT

Anemia is a common complication of chronic kidney disease, affecting the quality of life of patients. Among various factors, such as iron and erythropoietin deficiency, reduced red blood cell (RBC) lifespan has been implicated in the pathogenesis of anemia. However, mechanistic data on in vivo RBC dysfunction in kidney disease are lacking. Herein, we describe the development of chronic kidney disease-associated anemia in mice with proteinuric kidney disease resulting from either administration of doxorubicin or an inducible podocin deficiency. In both experimental models, anemia manifested at day 10 and progressed at day 30 despite increased circulating erythropoietin levels and erythropoiesis in the bone marrow and spleen. Circulating RBCs in both mouse models displayed altered morphology and diminished osmotic-sensitive deformability together with increased phosphatidylserine externalization on the outer plasma membrane, a hallmark of RBC death. Fluorescence-labelling of RBCs at day 20 of mice with doxorubicin-induced kidney disease revealed premature clearance from the circulation. Metabolomic analyses of RBCs from both mouse models demonstrated temporal changes in redox recycling pathways and Lands' cycle, a membrane lipid remodeling process. Anemic patients with proteinuric kidney disease had an increased proportion of circulating phosphatidylserine-positive RBCs. Thus, our observations suggest that reduced RBC lifespan, mediated by altered RBC metabolism, reduced RBC deformability, and enhanced cell death contribute to the development of anemia in proteinuric kidney disease.


Subject(s)
Anemia , Renal Insufficiency, Chronic , Anemia/chemically induced , Animals , Erythrocytes , Humans , Longevity , Mice , Quality of Life , Renal Insufficiency, Chronic/complications
2.
Am J Physiol Renal Physiol ; 321(4): F480-F493, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34423678

ABSTRACT

Proteolytic activation of the renal epithelial Na+ channel (ENaC) involves cleavage events in its α- and γ-subunits and is thought to mediate Na+ retention in nephrotic syndrome (NS). However, the detection of proteolytically processed ENaC in kidney tissue from nephrotic mice has been elusive so far. We used a refined Western blot technique to reliably discriminate full-length α-ENaC and γ-ENaC and their cleavage products after proteolysis at their proximal and distal cleavage sites (designated from the NH2-terminus), respectively. Proteolytic ENaC activation was investigated in kidneys from mice with experimental NS induced by doxorubicin or inducible podocin deficiency with or without treatment with the serine protease inhibitor aprotinin. Nephrotic mice developed Na+ retention and increased expression of fragments of α-ENaC and γ-ENaC cleaved at both the proximal cleavage site and, more prominently, the distal cleavage site, respectively. Treatment with aprotinin but not with the mineralocorticoid receptor antagonist canrenoate prevented Na+ retention and upregulation of the cleavage products in nephrotic mice. Increased expression of cleavage products of α-ENaC and γ-ENaC was similarly found in healthy mice treated with a low-salt diet, sensitive to mineralocorticoid receptor blockade. In human nephrectomy specimens, γ-ENaC was found in the full-length form and predominantly cleaved at its distal cleavage site. In conclusion, murine experimental NS leads to aprotinin-sensitive proteolytic activation of ENaC at both proximal and, more prominently, distal cleavage sites of its α- and γ-subunit, most likely by urinary serine protease activity or proteasuria.NEW & NOTEWORTHY This study demonstrates that murine experimental nephrotic syndrome leads to aprotinin-sensitive proteolytic activation of the epithelial Na+ channel at both the α- and γ-subunit, most likely by urinary serine protease activity or proteasuria.


Subject(s)
Epithelial Sodium Channels/metabolism , Gene Expression Regulation/drug effects , Nephrotic Syndrome/etiology , Nephrotic Syndrome/metabolism , Aldosterone/pharmacology , Animals , Antibiotics, Antineoplastic/toxicity , Aprotinin/pharmacology , Doxorubicin/toxicity , Epithelial Sodium Channels/genetics , Female , Humans , Kidney/metabolism , Male , Mice , Protein Subunits , Proteolysis , Triamterene/pharmacology
3.
Dis Model Mech ; 14(9)2021 09 01.
Article in English | MEDLINE | ID: mdl-34423816

ABSTRACT

Susceptibility to doxorubicin-induced nephropathy (DIN), a toxic model for the induction of proteinuria in mice, is related to the single-nucleotide polymorphism (SNP) C6418T of the Prkdc gene encoding for the DNA-repair enzyme DNA-PKcs. In addition, plasminogen (Plg) has been reported to play a role in glomerular damage. Here, we investigated the interdependence of both factors for the development of DIN. Genotyping confirmed the SNP of the Prkdc gene in C57BL/6 (PrkdcC6418/C6418) and 129S1/SvImJ (PrkdcT6418/T6418) mice. Intercross of heterozygous 129SB6F1 mice led to 129SB6F2 hybrids with Mendelian inheritance of the SNP. After doxorubicin injection, only homozygous F2 mice with PrkdcT6418/T6418 developed proteinuria. Genetic deficiency of Plg (Plg-/-) in otherwise susceptible 129S1/SvImJ mice led to resistance to DIN. Immunohistochemistry revealed glomerular binding of Plg in Plg+/+ mice after doxorubicin injection involving histone H2B as Plg receptor. In doxorubicin-resistant C57BL/6 mice, Plg binding was absent. In conclusion, susceptibility to DIN in 129S1/SvImJ mice is determined by a hierarchical two-hit process requiring the C6418T SNP in the Prkdc gene and subsequent glomerular binding of Plg. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Histones , Plasminogen , Animals , DNA , Doxorubicin/pharmacology , Histones/metabolism , Humans , Mice , Mice, Inbred C57BL , Plasminogen/genetics , Plasminogen/metabolism
4.
Sci Rep ; 11(1): 7117, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33782464

ABSTRACT

Inflammation is a natural defense process of the innate immune system, associated with the release of proinflammatory cytokines such as interleukin-1ß, interleukin-6, interleukin-12 and TNFα; and enzymes including iNOS through the activation and nuclear translocation of NF-κB p65 due to the phosphorylation of IκBα. Regulation of intracellular Ca2+ is considered a promising strategy for the prevention of reactive oxygen species (ROS) production and accumulation of DNA double strand breaks (DSBs) that occurs in inflammatory-associated-diseases. Among the metabolites of ellagitannins that are produced in the gut microbiome, urolithin A (UA) has received an increasing attention as a novel candidate with anti-inflammatory and anti-oxidant effects. Here, we investigated the effect of UA on the suppression of pro-inflammatory molecules and NF-κB activation by targeting TLR4 signalling pathway. We also identified the influence of UA on Ca2+ entry, ROS production and DSBs availability in murine bone-marrow-derived macrophages challenged with lipopolysaccharides (LPS). We found that UA inhibits IκBα phosphorylation and supresses MAPK and PI3K activation. In addition, UA was able to reduce calcium entry, ROS production and DSBs availability. In conclusion, we suggest that urolithin A is a promising therapeutic agent for treating inflammatory diseases through suppression of NF-κB and preserving DNA through maintaining intracellular calcium and ROS homeostasis.


Subject(s)
Coumarins/metabolism , Gastrointestinal Microbiome , Lipopolysaccharides/pharmacology , Macrophages/metabolism , NF-kappa B/antagonists & inhibitors , Animals , Calcium/metabolism , DNA Breaks, Double-Stranded , Inflammation/prevention & control , Inflammation Mediators/metabolism , Mice , MicroRNAs/genetics , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Signal Transduction , Toll-Like Receptor 4/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...