Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Cancers (Basel) ; 15(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38001698

ABSTRACT

Cancer remains a leading cause of death worldwide, despite many advances in diagnosis and treatment. Precision medicine has been a key area of focus, with research providing insights and progress in helping to lower cancer mortality through better patient stratification for therapies and more precise diagnostic techniques. However, unequal access to cancer care is still a global concern, with many patients having limited access to diagnostic tests and treatment regimens. Noninvasive liquid biopsy (LB) technology can determine tumour-specific molecular alterations in peripheral samples. This allows clinicians to infer knowledge at a DNA or cellular level, which can be used to screen individuals with high cancer risk, personalize treatments, monitor treatment response, and detect metastasis early. As scientific understanding of cancer pathology increases, LB technologies that utilize circulating tumour DNA (ctDNA) and circulating tumour cells (CTCs) have evolved over the course of research. These technologies incorporate tumour-specific markers into molecular testing platforms. For clinical translation and maximum patient benefit at a wider scale, the accuracy, accessibility, and affordability of LB tests need to be prioritized and compared with gold standard methodologies in current use. In this review, we highlight the range of technologies in LB diagnostics and discuss the future prospects of LB through the anticipated evolution of current technologies and the integration of emerging and novel ones. This could potentially allow a more cost-effective model of cancer care to be widely adopted.

2.
IEEE Sens Lett ; 7(8): 1-4, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37529707

ABSTRACT

Ion-sensitive field-effect transistors (ISFETs) in combination with unmodified complementary metal oxide semiconductors present a point-of-care platform for clinical diagnostics and prognostics. This work illustrates the sensitive and specific detection of two circulating mRNA markers for prostate cancer, the androgen receptor and the TMPRSS2-ERG fusion using a target-specific loop-mediated isothermal amplification method. TMPRSS2-ERG and androgen receptor RNA were detected down to 3x101 and 5x101 copies respectively in under 30 minutes. Administration of these assays onto the ISFET Lab-on-chip device was successful and the specificity of each marker was corroborated with mRNA extracted from prostate cancer cell lines.

3.
Comput Biol Med ; 161: 107027, 2023 07.
Article in English | MEDLINE | ID: mdl-37211003

ABSTRACT

The COVID-19 pandemic has highlighted a significant research gap in the field of molecular diagnostics. This has brought forth the need for AI-based edge solutions that can provide quick diagnostic results whilst maintaining data privacy, security and high standards of sensitivity and specificity. This paper presents a novel proof-of-concept method to detect nucleic acid amplification using ISFET sensors and deep learning. This enables the detection of DNA and RNA on a low-cost and portable lab-on-chip platform for identifying infectious diseases and cancer biomarkers. We show that by using spectrograms to transform the signal to the time-frequency domain, image processing techniques can be applied to achieve the reliable classification of the detected chemical signals. Transformation to spectrograms is beneficial as it makes the data compatible with 2D convolutional neural networks and helps gain significant performance improvement over neural networks trained on the time domain data. The trained network achieves an accuracy of 84% with a size of 30kB making it suitable for deployment on edge devices. This facilitates a new wave of intelligent lab-on-chip platforms that combine microfluidics, CMOS-based chemical sensing arrays and AI-based edge solutions for more intelligent and rapid molecular diagnostics.


Subject(s)
COVID-19 , Pandemics , Humans , COVID-19/diagnosis , Neural Networks, Computer , DNA , Nucleic Acid Amplification Techniques
4.
ACS Sens ; 7(11): 3389-3398, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36368032

ABSTRACT

Prostate cancer (PCa) is the second most common cause of male cancer-related death worldwide. The gold standard of treatment for advanced PCa is androgen deprivation therapy (ADT). However, eventual failure of ADT is common and leads to lethal metastatic castration-resistant PCa. As such, the detection of relevant biomarkers in the blood for drug resistance in metastatic castration-resistant PCa patients could lead to personalized treatment options. mRNA detection is often limited by the low specificity of qPCR assays which are restricted to specialized laboratories. Here, we present a novel reverse-transcription loop-mediated isothermal amplification assay and have demonstrated its capability for sensitive detection of AR-V7 and YAP1 RNA (3 × 101 RNA copies per reaction). This work presents a foundation for the detection of circulating mRNA in PCa on a non-invasive lab-on-chip device for use at the point-of-care. This technique was implemented onto a lab-on-chip platform integrating an array of chemical sensors (ion-sensitive field-effect transistors) for real-time detection of RNA. Detection of RNA presence was achieved through the translation of chemical signals into electrical readouts. Validation of this technique was conducted with rapid detection (<15 min) of extracted RNA from prostate cancer cell lines 22Rv1s and DU145s.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Humans , Male , Prostatic Neoplasms, Castration-Resistant/diagnosis , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , RNA, Messenger/genetics , Androgen Antagonists/therapeutic use , Laboratories , Prognosis , RNA
5.
Sci Rep ; 12(1): 8750, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35610285

ABSTRACT

Cervical cancer affects over half a million people worldwide each year, the majority of whom are in resource-limited settings where cytology screening is not available. As persistent human papilloma virus (HPV) infections are a key causative factor, detection of HPV strains now complements cytology where screening services exist. This work demonstrates the efficacy of a handheld Lab-on-Chip (LoC) device, with an external sample extraction process, in detecting cervical cancer from biopsy samples. The device is based on Ion-Sensitive Field-Effect Transistor (ISFET) sensors used in combination with loop-mediated isothermal amplification (LAMP) assays, to amplify HPV DNA and human telomerase reverse transcriptase (hTERT) mRNA. These markers were selected because of their high levels of expression in cervical cancer cells, but low to nil expression in normal cervical tissue. The achieved analytical sensitivity for the molecular targets resolved down to a single copy per reaction for the mRNA markers, achieving a limit of detection of 102 for hTERT. In the tissue samples, HPV-16 DNA was present in 4/5 malignant and 2/5 benign tissues, with HPV-18 DNA being present in 1/5 malignant and 1/5 benign tissues. hTERT mRNA was detected in all malignant and no benign tissues, with the demonstrated pilot data to indicate the potential for using the LoC in cervical cancer screening in resource-limited settings on a large scale.


Subject(s)
Alphapapillomavirus , Papillomavirus Infections , Telomerase , Uterine Cervical Neoplasms , Alphapapillomavirus/genetics , Biomarkers, Tumor/genetics , Early Detection of Cancer , Female , Humans , Papillomaviridae/genetics , Papillomaviridae/metabolism , Point-of-Care Systems , RNA, Messenger/genetics , RNA, Messenger/metabolism , Telomerase/genetics , Telomerase/metabolism , Uterine Cervical Neoplasms/pathology
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 1852-1856, 2021 11.
Article in English | MEDLINE | ID: mdl-34891648

ABSTRACT

This paper introduces a novel Python script which automates the design process of cancer variant-specific DNA probes, based on the amplification method LAMP (Loop-Mediated Isothermal Amplification). With just an input of the DNA sequence and the mutation base location, the script outputs suggestions of two best fitting primer sets for a given target, together with an estimated working efficiency. The script also implements a feature of 'script training', using experimentally-validated primers as a benchmark for primer design optimisation. The proposed script has been tested using the gene sequences of ESR1 p.E380Q and ESR1 p.Y537S cancer specific mutations, with the results to closely resemble the experimentally validated primer sets. Creating a rapid LAMP primer design utility allows LAMP to be more easily used as a molecular method for assay development in Lab-on-Chip (LoC) systems to track mutational profiles of variant-specific assays.


Subject(s)
Neoplasms , Algorithms , DNA Probes , DNA, Neoplasm , Humans , Mutation , Neoplasms/genetics
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 7385-7389, 2021 11.
Article in English | MEDLINE | ID: mdl-34892804

ABSTRACT

The growing cancer burden necessitates the development of cost-effective solutions that provide rapid, precise and personalised information to improve patient outcome. The aim of this study was to develop a novel, Lab-on-Chip compatible method for the detection and quantification of DNA methylation for MGMT, a well-established molecular biomarker for glioblastoma, with direct clinical translation as a predictive target. A Lab-on-Chip compatible isothermal amplification method (LAMP) was used to test its efficacy for detection of sequence-specific methylated regions of MGMT, with the method's specificity and sensitivity to have been compared against gold-standards (MethyLight, JumpStart). Our LAMP primer combinations were shown to be specific to the MGMT methylated region, while sensitivity assays determined that the amplification methods were capable of running at clinically relevant DNA concentrations of 0.2 - 20 ng/µL. For the first time, the ability to detect the presence of DNA methylation on bisulfite converted DNA was demonstrated on a Lab-on-Chip setup, laying the foundation for future applications of this platform to other epigenetic biomarkers in a point-of-care setting.


Subject(s)
Glioblastoma , DNA Methylation , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Epigenomics , Humans , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
8.
Front Oncol ; 11: 721577, 2021.
Article in English | MEDLINE | ID: mdl-34604057

ABSTRACT

BACKGROUND: Immune system-related receptors CD40 (tumor necrosis factor receptor superfamily member 5), BAFFR (tumor necrosis factor receptor superfamily member 13C), and LTßR (tumor necrosis factor receptor superfamily member 3) play a pivotal role in non-small-cell lung cancer (NSCLC). To further evaluate their role in NSCLC, CD40 rs1883832 (T>C), BAFFR rs7290134 (A>G), and LTßR rs10849448 (A>G) single-nucleotide polymorphisms (SNPs) were investigated regarding their impact in risk and clinical outcome of NSCLC patients. METHODS: The three selected SNPs were evaluated in 229 NSCLC patients and 299 healthy controls, while CD40, BAFFR, and LTßR protein expression was assessed by immunohistochemistry in 96 tumor specimens from NSCLC patients. RESULTS: In total, CD40 rs1883832 was associated with NSCLC risk, with the T allele, after adjusting for cofactors, being related to increased risk (p = 0.007; OR 1.701). Moreover, the CT genotype was associated with increased risk (p = 0.024; OR 1.606) and poorer 5-year overall survival (OS) after adjusting for cofactors (p = 0.001, HR 1.829), while CC was associated with higher CD40 expression in tumorous cells (p = 0.040) and in stromal cells (p = 0.036). In addition, AA homozygotes for the LTßR rs10849448 had increased risk for NSCLC in multivariate analysis (p = 0.008; OR, 2.106) and higher LTßR membranous expression (p = 0.035). Although BAFFR rs7290134 was associated with BAFFR membranous expression (p = 0.039), BAFFR rs7290134 was not associated with neither the disease risk nor the prognosis of NSCLC patients. CONCLUSIONS: In conclusion, CD40 rs1883832 and LTßR rs10849448 seem to be associated with increased risk for NSCLC, while CD40 rs1883832 is also associated with OS of patients with NSCLC.

9.
IEEE Trans Biomed Circuits Syst ; 15(3): 380-389, 2021 06.
Article in English | MEDLINE | ID: mdl-34214044

ABSTRACT

ESR1 mutations are important biomarkers in metastatic breast cancer. Specifically, p.E380Q and p.Y537S mutations arise in response to hormonal therapies given to patients with hormone receptor positive (HR+) breast cancer (BC). This paper demonstrates the efficacy of an ISFET based CMOS integrated Lab-on-Chip (LoC) system, coupled with variant-specific isothermal amplification chemistries, for detection and discrimination of wild type (WT) from mutant (MT) copies of the ESR1 gene. Hormonal resistant cancers often lead to increased chances of metastatic disease which leads to high mortality rates, especially in low-income regions and areas with low healthcare coverage. Design and optimization of bespoke primers was carried out and tested on a qPCR instrument and then benchmarked versus the LoC platform. Assays for detection of p.Y537S and p.E380Q were developed and tested on the LoC platform, achieving amplification in under 25 minutes and sensitivity of down to 1000 copies of DNA per reaction for both target assays. The LoC system hereby presented, is cheaper and smaller than other standard industry equivalent technologies such as qPCR and sequencing. The LoC platform proposed, has the potential to be used at a breast cancer point-of-care testing setting, offering mutational tracking of circulating tumour DNA in liquid biopsies to assist patient stratification and metastatic monitoring.


Subject(s)
Breast Neoplasms , Breast Neoplasms/genetics , Estrogen Receptor alpha/genetics , Female , Humans , Mutation
10.
Cancer Res ; 80(19): 4025-4036, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32616502

ABSTRACT

Thirty-four years since its discovery, NF-κB remains a transcription factor with great potential for cancer therapy. However, NF-κB-targeted therapies have yet to find a way to be clinically translatable. Here, we focus exclusively on the role of NF-κB in non-small cell lung cancer (NSCLC) and discuss its contributing effect on cancer hallmarks such as inflammation, proliferation, survival, apoptosis, angiogenesis, epithelial-mesenchymal transition, metastasis, stemness, metabolism, and therapy resistance. In addition, we present our current knowledge of the clinical significance of NF-κB and its involvement in the treatment of patients with NSCLC with chemotherapy, targeted therapies, and immunotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , NF-kappa B/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/etiology , Carcinoma, Non-Small-Cell Lung/therapy , Genetic Variation , Humans , Lung Neoplasms/etiology , Lung Neoplasms/therapy , NF-kappa B/genetics , Signal Transduction
11.
Sci Rep ; 10(1): 4553, 2020 03 12.
Article in English | MEDLINE | ID: mdl-32165708

ABSTRACT

Breast cancer (BC) is a common cancer in women worldwide. Despite advances in treatment, up to 30% of women eventually relapse and die of metastatic breast cancer. Liquid biopsy analysis of circulating cell-free DNA fragments in the patients' blood can monitor clonality and evolving mutations as a surrogate for tumour biopsy. Next generation sequencing platforms and digital droplet PCR can be used to profile circulating tumour DNA from liquid biopsies; however, they are expensive and time consuming for clinical use. Here, we report a novel strategy with proof-of-concept data that supports the usage of loop-mediated isothermal amplification (LAMP) to detect PIK3CA c.3140 A > G (H1047R), a prevalent BC missense mutation that is attributed to BC tumour growth. Allele-specific primers were designed and optimized to detect the p.H1047R variant following the USS-sbLAMP method. The assay was developed with synthetic DNA templates and validated with DNA from two breast cancer cell-lines and two patient tumour tissue samples through a qPCR instrument and finally piloted on an ISFET enabled microchip. This work sets a foundation for BC mutational profiling on a Lab-on-Chip device, to help the early detection of patient relapse and to monitor efficacy of systemic therapies for personalised cancer patient management.


Subject(s)
Breast Neoplasms/diagnosis , Class I Phosphatidylinositol 3-Kinases/genetics , Molecular Diagnostic Techniques/instrumentation , Mutation, Missense , Nucleic Acid Amplification Techniques/instrumentation , Breast Neoplasms/genetics , Cell Line, Tumor , DNA Primers/genetics , Early Detection of Cancer , Female , Humans , Lab-On-A-Chip Devices , Liquid Biopsy , MCF-7 Cells , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Pilot Projects , Proof of Concept Study
12.
Sci Rep ; 9(1): 14299, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31586084

ABSTRACT

A growing number of studies has shed light on the role of the NF-κΒ in non-small-cell lung cancer (NSCLC). To address the significance of major effectors of the NF-κΒ alternative pathway, we investigated the relationship between NF-κΒ2, RelB, NIK and Bcl3 expression (mRNA and protein) and the clinical outcome of NSCLC patients. NF-κΒ2, RelB, NIK and Bcl3 protein expression levels were assessed by immunohistochemistry in tissue samples from 151 NSCLC patients who had curative resection. mRNA levels were also evaluated in 69 patients using quantitative real-time PCR. Although all studied proteins were overexpressed in NSCLC (P < 0.001 for all), only RelB mRNA levels were strongly increased in cancerous specimens compared to tumor-adjacent non-neoplastic tissues (P = 0.009). Moreover, NF-κB2, RelB and Bcl3 expression was associated with overall survival (OS). In particular, cytoplasmic and mRNA expression of RelB was related to 5-year OS (P = 0.014 and P = 0.006, respectively). Multivariate analysis also showed that Bcl3 expression (nuclear and cytoplasmic) was associated with increased 5-year OS (P = 0.002 and P = 0.036, respectively). In addition, higher Bcl3 mRNA levels were associated with inferior OS in stages I & II and improved OS in stages III and IV after 5-year follow-up (P = 0.004 and P = 0.001, respectively). Furthermore, stage I patients with lower NF-κB2 mRNA levels had better 5-year survival in univariate and multivariate analysis (P = 0.031 and P = 0.028, respectively). Interestingly, RelB expression (cytoplasmic and mRNA) was inversely associated with relapse rates (P = 0.027 and P = 0.015, respectively), while low NIK cytoplasmic expression was associated with lower relapse rates (P = 0.019). Cytoplasmic NIK expression as well as NF-κB2/ Bcl3 detection was associated with lymph node infiltration (P = 0.039 and P = 0.014, respectively). The present study confirms the deregulation of the NF-κB alternative pathway in NSCLC and also demonstrates the importance of this pathway in prognosis, recurrence and infiltration of regional lymph nodes.


Subject(s)
B-Cell Lymphoma 3 Protein/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , NF-kappa B p52 Subunit/metabolism , Protein Serine-Threonine Kinases/metabolism , Transcription Factor RelB/metabolism , Adenocarcinoma/metabolism , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Carcinoma, Large Cell/metabolism , Carcinoma, Squamous Cell/metabolism , Disease Progression , Female , Humans , Male , Middle Aged , Prognosis , Retrospective Studies , NF-kappaB-Inducing Kinase
13.
J Clin Med ; 8(5)2019 May 24.
Article in English | MEDLINE | ID: mdl-31137630

ABSTRACT

An increasing number of studies implicates the NF-κB (Nuclear Factor of kappa light chain gene enhancer in B cells) alternative pathway in non-small-cell lung cancer (NSCLC). We assessed the clinical significance of CD40 (Tumor necrosis factor receptor superfamily member 5, TNFRSF5), BAFFR (B-cell activating factor receptor), RANK (Receptor activator of NF-κB) and LTßR (lymphotoxin ß receptor) receptors, which activate the alternative pathway of NF-κB, in NSCLC. Evaluation of CD40, BAFFR, RANK and LTßR expression was performed based on the Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) datasets, while protein expression was assessed by immunohistochemistry in specimens from 119 operated NSCLC patients. CD40 gene overexpression was correlated with improved five-year overall survival (OS) (p < 0.001), while increased BAFFR and LTßR mRNA levels were associated with worse OS in patients with adenocarcinomas (p < 0.001 and p < 0.001, respectively). Similarly, patients with adenocarcinomas exhibited a negative correlation between membranous BAFFR protein expression in carcinoma cells and three- and five-year survival (p = 0.021; HR, 4.977 and p = 0.030; HR, 3.358, respectively) as well as between BAFFR protein overexpression in cancer-associated fibroblasts (CAFs) and two-year survival (p = 0.036; HR, 1.983). Patients with increased LTßR nuclear protein staining or stage II patients with lower cytoplasmic LTßR protein expression had worse five-year OS (p = 0.039 and p = 0.008, respectively). Moreover, CD40 protein expression in tumor infiltrating lymphocytes (TILs) and CAFs was positively associated with metastatic spread while BAFFR protein expression in CAFs was negatively associated with bone metastasis (p = 0.041). Our data suggests that CD40, BAFFR, RANK and LTßR play an important role in NSCLC and further supports the role of NF-κB alternative pathway in NSCLC.

14.
IEEE Trans Biomed Circuits Syst ; 12(5): 1186-1201, 2018 10.
Article in English | MEDLINE | ID: mdl-30010588

ABSTRACT

This paper gives an overview of how CMOS design methods can be applied to ion-sensitive field effect transistor (ISFETs) for pH-based DNA methylation and miRNA detection. Design specifications are fundamentally defined by the choice of analysis. As such, the focus for DNA methylation was on developing front-end analogue circuits to carry out Methylation-specific PCR (MSP) for Point-of-Care applications, and sequencing for detailed analysis. The use of MSP prompted the design of an ISFET weak inversion current mirror topology for differential sensing and reduction of drift and temperature sensitivities. The primary limitation in ion-semiconductor sequencing is base calling of repeated nucleotides known as homopolymers. Implementation of a switched current integrator can potentially increase both accuracy and window for detection, within the frequency region of DNA reactions. For quantifying miRNAs, digital back-end processing circuits were considered toward a fully portable platform that can carry out real-time monitoring of DNA amplification reactions. Two systems to evaluate threshold cycles were developed, based on the Derivative method and a new proposed 3-point exponential evaluation aim to reduce detection time simultaneously. Both implementations were tested with datasets from fluorescent qPCR reactions, as well as pH-LAMP experiments that have been optimized for on-chip amplifications. All designs were fabricated in unmodified CMOS with performance assessed based on functionality as well as pH-resolution required in practice.


Subject(s)
Epigenomics/methods , Transistors, Electronic , DNA/analysis , DNA/genetics , DNA/metabolism , DNA Methylation , Epigenomics/instrumentation , Humans , Hydrogen-Ion Concentration , Lab-On-A-Chip Devices , MicroRNAs/analysis , MicroRNAs/metabolism , Point-of-Care Systems , Polymerase Chain Reaction , Polymorphism, Single Nucleotide
15.
Oncotarget ; 9(30): 21411-21428, 2018 Apr 20.
Article in English | MEDLINE | ID: mdl-29765549

ABSTRACT

Expression of Transcribed Ultraconserved Regions (T-UCRs) is often deregulated in cancer. The present study assesses the expression and methylation of three T-UCRs (Uc160, Uc283 and Uc346) in colorectal cancer (CRC) and explores the potential of T-UCR methylation in circulating DNA for the detection of adenomas and adenocarcinomas. Expression levels of Uc160, Uc283 and Uc346 were lower in neoplastic tissues from 64 CRC patients (statistically significant for Uc160, p<0.001), compared to non-malignant tissues, while methylation levels displayed the inverse pattern (p<0.001, p=0.001 and p=0.004 respectively). In colon cancer cell lines, overexpression of Uc160 and Uc346 led to increased proliferation and migration rates. Methylation levels of Uc160 in plasma of 50 CRC, 59 adenoma patients, 40 healthy subjects and 12 patients with colon inflammation or diverticulosis predicted the presence of CRC with 35% sensitivity and 89% specificity (p=0.016), while methylation levels of the combination of all three T-UCRs resulted in 45% sensitivity and 74.3% specificity (p=0.013). In conclusion, studied T-UCRs' expression and methylation status are deregulated in CRC while Uc160 and Uc346 appear to have a complicated role in CRC progression. Moreover their methylation status appears a promising non-invasive screening test for CRC, provided that the sensitivity of the assay is improved.

16.
Sci Rep ; 8(1): 5259, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29588475

ABSTRACT

During the last decade, a growing number of publications implicate NF-kB2 in NSCLC pathogenesis. Here, we investigated the clinical relevance of NF-kB2 single nucleotide polymorphisms (SNPs) rs7897947, rs11574852 and rs12769316 in NSCLC and their association with NF-kB2 protein and mRNA levels. Our data show that TT (rs7897947T >G) and AA (rs12769316G >A) genotypes were strongly associated with an increased risk for NSCLC (P = 0.019 and P = 0.003, respectively). Additionally, in multivariate analysis, TT (rs7897947T >G) homozygosity was associated with worse 2- and 3-year survival rates (P = 0.030 and P = 0.028, respectively), especially among patients with stages III/IV, who had worse 2, 3 and 5-year survival (P = 0.001, P = 0.022 and P = 0.035, respectively). In chemotherapy-treated patients, TT (rs12769316G >A) homozygosity was also associated with worse 2- and 3-year survival compared to G allele carriers (P = 0.006 and P = 0.014, respectively). Furthermore, rs12769316 was correlated with survival outcome of stage I and II patients (P = 0.031 and P = 0.006, respectively). Interestingly, amongst the patients who developed metastases, A allele carriers had better 5-year survival (P = 0.020). In addition, rs12769316 was associated with NF-kB2 protein (P = 0.001) and mRNA expression (P = 0.017) as well as with tumor maximum diameter (P = 0.025). Overall, this study suggests that rs7897947 and rs12769316 are involved in NSCLC susceptibility, in treatment response and in clinical outcome.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , NF-kappa B p52 Subunit/genetics , Polymorphism, Single Nucleotide , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/epidemiology , Female , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/epidemiology , Male , Prognosis , Risk Factors , Survival Analysis
18.
Lung Cancer ; 89(3): 311-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26122346

ABSTRACT

OBJECTIVES: BCL3, a known atypical IκB family member, has been documented to be upregulated in hematological malignancies and in some solid tumors, functioning as a crucial player in tumor development. Recently, rs8100239, a tag-Single Nucleotide Polymorphism (SNP) in BCL3 (T>A) has been identified, but there are no data regarding its involvement in non-small-cell lung cancer (NSCLC) initiation and progression. MATERIALS AND METHODS: To study the possible association of BCL3 with NSCLC, 268 patients and 279 healthy controls were genotyped for rs8100239. Moreover, BCL3 protein expression was also investigated in 112 NSCLC cases through an immunohistochemical analysis. RESULTS: NSCLC patients with AA genotype displayed significantly worse prognosis compared to T allele carriers (P<0.001), who had less frequent intermediate nuclear BCL3 expression (P=0.042). In addition, overexpression of BCL3 was detected in tumor specimens, compared to normal tissue (P<0.001). Furthermore, BCL3 protein levels were associated with five-year survival (P=0.039), maximum diameter of lesion (P=0.012), grade (P=0.002) and relapse frequency (P=0.041). CONCLUSIONS: The present study is the first to show a relationship between the genetic variation rs8100239 of BCL3 and cancer patients' survival. It also represents the first quantitative evaluation of BCL3 expression in NSCLC. Our findings indicate that rs8100239 may be considered as a novel prognostic indicator, demonstrating also the overexpression of BCL3 protein in NSCLC and implicating this pivotal molecule in the pathogenesis of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/mortality , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Proto-Oncogene Proteins/genetics , Transcription Factors/genetics , Adult , Aged , Aged, 80 and over , Alleles , B-Cell Lymphoma 3 Protein , Carcinoma, Non-Small-Cell Lung/pathology , Case-Control Studies , Female , Gene Expression , Gene Frequency , Genotype , Humans , Lung Neoplasms/pathology , Lymphatic Metastasis , Male , Middle Aged , Neoplasm Grading , Neoplasm Recurrence, Local , Neoplasm Staging , Polymorphism, Single Nucleotide , Prognosis , Proto-Oncogene Proteins/metabolism , Survival Analysis , Transcription Factors/metabolism , Tumor Burden
19.
IEEE Trans Biomed Circuits Syst ; 8(4): 565-74, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24240008

ABSTRACT

This paper presents a low power current-mode method for monitoring differentially derived changes in pH from ion-sensitive field-effect transistor (ISFET) sensors, by adopting the Chemical Gilbert Cell. The fabricated system, with only a few transistors, achieves differential measurements and therefore drift minimisation of continuously recorded pH signals obtained from biochemical reactions such as DNA amplification in addition to combined gain tunability using only a single current. Experimental results are presented, demonstrating the capabilities of the front-end at a microscopic level through integration in a lab-on-chip (LoC) setup combining a microfluidic assembly, suitable for applications that require differential monitoring in small volumes, such as DNA detection where more than one gene needs to be studied. The system was designed and fabricated in a typical 0.35 µ m CMOS process with the resulting topology achieving good differential pH sensitivity with a measured low power consumption of only 165 nW due to weak inversion operation. A tunable gain is demonstrated with results confirming 15.56 dB gain at 20 nA of ISFET bias current and drift reduction of up to 100 times compared to a single-ended measurement is also reported due to the differential current output, making it ideal for robust, low-power chemical measurement.


Subject(s)
Transistors, Electronic , DNA/chemistry , DNA/metabolism , Equipment Design , Hydrogen-Ion Concentration , Ions/chemistry , Lab-On-A-Chip Devices
SELECTION OF CITATIONS
SEARCH DETAIL
...