Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE J Biomed Health Inform ; 24(6): 1557-1568, 2020 06.
Article in English | MEDLINE | ID: mdl-32287028

ABSTRACT

The implications of frailty in older adults' health status and autonomy necessitates the understanding and effective management of this widespread condition as a priority for modern societies. Despite its importance, we still stand far from early detection, effective management and prevention of frailty. One of the most important reasons for this is the lack of sensitive instruments able to early identify frailty and pre-frailty conditions. The FrailSafe system provides a novel approach to this complex, medical, social and public health problem. It aspires to identify the most important components of frailty, construct cumulative metrics serving as biomarkers, and apply this knowledge and expertise for self-management and prevention. This paper presents a high-level overview of the FrailSafe system architecture providing details on the monitoring sensors and devices, the software front-ends for the interaction of the users with the system, as well as the back-end part including the data analysis and decision support modules. Data storage, remote processing and security issues are also discussed. The evaluation of the system by older individuals from 3 different countries highlighted the potential of frailty prediction strategies based on information and communication technology (ICT).


Subject(s)
Frail Elderly , Frailty/diagnosis , Monitoring, Ambulatory/methods , Accelerometry , Accidental Falls , Aged , Computer Communication Networks , Decision Support Techniques , Home Care Services , Humans , Signal Processing, Computer-Assisted
2.
Sensors (Basel) ; 19(4)2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30791587

ABSTRACT

The physiological monitoring of older people using wearable sensors has shown great potential in improving their quality of life and preventing undesired events related to their health status. Nevertheless, creating robust predictive models from data collected unobtrusively in home environments can be challenging, especially for vulnerable ageing population. Under that premise, we propose an activity recognition scheme for older people exploiting feature extraction and machine learning, along with heuristic computational solutions to address the challenges due to inconsistent measurements in non-standardized environments. In addition, we compare the customized pipeline with deep learning architectures, such as convolutional neural networks, applied to raw sensor data without any pre- or post-processing adjustments. The results demonstrate that the generalizable deep architectures can compensate for inconsistencies during data acquisition providing a valuable alternative.


Subject(s)
Exercise , Machine Learning , Monitoring, Physiologic/methods , Wearable Electronic Devices , Aged , Aged, 80 and over , Algorithms , Female , Humans , Male , Neural Networks, Computer , Quality of Life
3.
BMC Med Inform Decis Mak ; 19(1): 25, 2019 01 28.
Article in English | MEDLINE | ID: mdl-30691467

ABSTRACT

BACKGROUND: Frailty is a common clinical syndrome in ageing population that carries an increased risk for adverse health outcomes including falls, hospitalization, disability, and mortality. As these outcomes affect the health and social care planning, during the last years there is a tendency of investing in monitoring and preventing strategies. Although a number of electronic health record (EHR) systems have been developed, including personalized virtual patient models, there are limited ageing population oriented systems. METHODS: We exploit the openEHR framework for the representation of frailty in ageing population in order to attain semantic interoperability, and we present the methodology for adoption or development of archetypes. We also propose a framework for a one-to-one mapping between openEHR archetypes and a column-family NoSQL database (HBase) aiming at the integration of existing and newly developed archetypes into it. RESULTS: The requirement analysis of our study resulted in the definition of 22 coherent and clinically meaningful parameters for the description of frailty in older adults. The implemented openEHR methodology led to the direct use of 22 archetypes, the modification and reuse of two archetypes, and the development of 28 new archetypes. Additionally, the mapping procedure led to two different HBase tables for the storage of the data. CONCLUSIONS: In this work, an openEHR-based virtual patient model has been designed and integrated into an HBase storage system, exploiting the advantages of the underlying technologies. This framework can serve as a base for the development of a decision support system using the openEHR's Guideline Definition Language in the future.


Subject(s)
Aging , Electronic Health Records , Frailty , Health Information Interoperability , Models, Theoretical , Aged , Frailty/classification , Humans , Semantics
SELECTION OF CITATIONS
SEARCH DETAIL
...