Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 196(1): 105, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38158499

ABSTRACT

Although the Dudhganga watershed is the primary water and food resource of the Kashmir Valley, it has undergone significant changes in food resources and strategies due to rampant urbanization in the area over the past 20 years. This urbanization has had a profound impact on the watershed and has also affected land use and land cover (LULC) patterns and environmental changes. The objective of this study is to investigate the effects of urban development on food security parameters in the Dudhganga watershed area, India, from 2000 to 2020, by evaluating LULC changes. Additionally, the study aims to examine the relationship between climate changes and LULC indices, such as the Modified Normalized Difference Water Index (MNDWI), Normalized Difference Vegetation Index (NDVI), and Normalized Difference Built-up Index (NDBI). The results indicate a 21.66% increase in barren areas, at the expense of snow-covered lands, during the 2000-2020 period. The primary land cover transition observed is towards barren areas. The predictions for LULC in 2030 highlight the need for careful management of land use and climate changes in the study area. This study can assist local government officials in reassessing food strategies by identifying areas where urban expansion should be controlled and climate impacts minimized, to prevent local hunger and ecological degradation. Therefore, the development of systematic urban planning approaches and mitigation of climate change sources are crucial. Furthermore, the adoption of advanced agricultural technology should be considered to mitigate the impact of urban expansion.


Subject(s)
Anthropogenic Effects , Environmental Monitoring , Environmental Monitoring/methods , Urbanization , India , Conservation of Natural Resources , Water
2.
Sci Rep ; 12(1): 14454, 2022 08 24.
Article in English | MEDLINE | ID: mdl-36002470

ABSTRACT

Resilient modulus (Mr) of subgrade soils is one of the crucial inputs in pavement structural design methods. However, the spatial variability of soil properties and the nature of test protocols, the laboratory determination of Mr has become inexpedient. This paper aims to design an accurate soft computing technique for the prediction of Mr of subgrade soils using the hybrid least square support vector machine (LSSVM) approaches. Six swarm intelligence algorithms, namely particle swarm optimization (PSO), grey wolf optimizer (GWO), symbiotic organisms search (SOS), salp swarm algorithm (SSA), slime mould algorithm (SMA), and Harris hawks optimization (HHO) have been applied and compared to optimize the LSSVM parameters. For this purpose, a literature dataset (891 datasets) of different types of soils has been used to design and evaluate the proposed models. The input variables in all of the proposed models included confining stress, deviator stress, unconfined compressive strength, degree of soil saturation, soil moisture content, optimum moisture content, plasticity index, liquid limit, and percent of soil particles (P #200). The accuracy of the proposed models was assessed by comparing the predicted with the observed of Mr values with respect to different statistical analyses, i.e., root means square error (RMSE) and determination coefficient (R2). For modeling the Mr of subgrade soils, percent passing No. 200 sieve, optimum moisture content, and unconfined compressive strength were found to be the most significant variables. It is observed that the performance of LSSVM-GWO, LSSVM-SOS, and LSSVM-SSA outperforms other models in predicting accurate values of Mr. The (RMSE and R2) of the LSSVM-GWO, LSSVM-SSA, and LSSVM-SOS are (6.79 MPa and 0.940), (6.78 MPa and 0.940), and (6.72 MPa and 0.942), respectively, and hence, LSSVM-SOS can be used for high estimating accuracy of Mr of subgrade soils.


Subject(s)
Soil , Support Vector Machine , Algorithms , Intelligence , Least-Squares Analysis
3.
Materials (Basel) ; 15(11)2022 May 24.
Article in English | MEDLINE | ID: mdl-35683055

ABSTRACT

In this study, the shear strength of sixteen full-scale over-reinforced concrete beams with and without nano silica (NS), constructed from high-strength concrete (HSC), was investigated both experimentally and analytically. Nano silica was used as a partial replacement for Portland cement. According to the NS ratio, the tested beams were divided into four groups: 0%, 1%, 2%, and 3%. Shear span to effective depth (a/d) ratios of 1.5 and 2.5 were used in each group, and two different stirrups ratios (ρv) were employed as 0% and 0.38%. The shear strength provisions used by some international codes, such as the American Concrete Institute (ACI-2019), the Eurocode 2 (EC-2), and the Egyptian Code (ECP 207), were examined when applied to HSC beams with and without NS. The most important factors to consider were the effect of using NS on the shear span to effective depth (a/d) ratio and the shear strength of the beams with and without stirrups. The experimental results were validated using a nonlinear finite element analysis using the computer program ABAQUS. The experimental results showed that increasing the NS ratio reduced the number of cracks, and increased the cracks spacing, as well as reducing crack width. In specimens without stirrups, these effects were more obvious. A rise in the (a/d) ratio increased the number of cracks along the beam length, notably in the mid-span region. For specimens without stirrups and with an (a/d) of 1.5, raising NS from 0% to 1%, 2%, and 3% increased the ultimate load by 13%, 30%, and 39%, respectively, whereas for specimens with an (a/d) of 2.5, the ultimate load increased with approximately the same increase as that in beams with an (a/d) of 1.5 due to using NS. Additionally, the addition of NS to concrete boosted the contribution of the concrete to the shear strength, as shown by the results of beams without stirrups. For specimens with stirrups and an (a/d) of 1.5, raising NS from 0% to 1%, 2%, and 3% increased the ultimate load by 8%, 21%, and 30%, respectively. Additionally, for specimens with stirrups and an (a/d) of 2.5, the ultimate load increased with approximately the same increase as that in beams with stirrups and an (a/d) of 1.5 due to using NS. The test findings indicate that the shear strength calculated using the equations of the ACI 318-19 is more conservative than EC-2 and ECP 207 for NS concrete beams. The finite element program ABAQUS may be successfully used to predict the shear strength of NS concrete beams.

4.
Materials (Basel) ; 13(8)2020 Apr 23.
Article in English | MEDLINE | ID: mdl-32340133

ABSTRACT

This research investigates the means to improve the compressive strength of mortar mixtures through using novel mixtures. These mixtures include magnetic water (MW) and fly ash (FA). MW was obtained by circulating tap water (TW) through a magnetic field. The magnetization duration was represented by the number of cycles, the content of FA was replaced with cement, and the super plasticizer percentage (SP) and the curing age were used and evaluated experimentally for producing the mortar mixtures. Mortar flow, crushing compressive strength, and ultrasonic pulse velocity (UPV) tests were applied to evaluate the performances of mixing characteristics. The results demonstrate that the MW-treated mortar mixtures show higher compression strength results than those prepared by TW. The compressive strength was increased up to 60% with 150 cycles, a dose of 0.5% of SP and no FA content at the age of 56 days. The dose of SP can be cut down by a maximum of 40% to 50% in cementitious mortar. the workability was enhanced by a percentage of 70%.

5.
Sensors (Basel) ; 15(9): 24428-44, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26402687

ABSTRACT

The Global Positioning System (GPS) is recently used widely in structures and other applications. Notwithstanding, the GPS accuracy still suffers from the errors afflicting the measurements, particularly the short-period displacement of structural components. Previously, the multi filter method is utilized to remove the displacement errors. This paper aims at using a novel application for the neural network prediction models to improve the GPS monitoring time series data. Four prediction models for the learning algorithms are applied and used with neural network solutions: back-propagation, Cascade-forward back-propagation, adaptive filter and extended Kalman filter, to estimate which model can be recommended. The noise simulation and bridge's short-period GPS of the monitoring displacement component of one Hz sampling frequency are used to validate the four models and the previous method. The results show that the Adaptive neural networks filter is suggested for de-noising the observations, specifically for the GPS displacement components of structures. Also, this model is expected to have significant influence on the design of structures in the low frequency responses and measurements' contents.

SELECTION OF CITATIONS
SEARCH DETAIL
...