Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Immun Ageing ; 20(1): 22, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37173694

ABSTRACT

Pain in Fabry disease (FD) is generally accepted to result from neuronal damage in the peripheral nervous system as a consequence of excess lipid storage caused by alpha-galactosidase A (α-Gal A) deficiency. Signatures of pain arising from nerve injuries are generally associated with changes of number, location and phenotypes of immune cells within dorsal root ganglia (DRG). However, the neuroimmune processes in the DRG linked to accumulating glycosphingolipids in Fabry disease are insufficiently understood.Therefore, using indirect immune fluorescence microscopy, transmigration assays and FACS together with transcriptomic signatures associated with immune processes, we assessed age-dependent neuroimmune alterations in DRG obtained from mice with a global depletion of α-Gal A as a valid mouse model for FD. Macrophage numbers in the DRG of FD mice were unaltered, and BV-2 cells as a model for monocytic cells did not show augmented migratory reactions to glycosphingolipids exposure suggesting that these do not act as chemoattractants in FD. However, we found pronounced alterations of lysosomal signatures in sensory neurons and of macrophage morphology and phenotypes in FD DRG. Macrophages exhibited reduced morphological complexity indicated by a smaller number of ramifications and more rounded shape, which were age dependent and indicative of premature monocytic aging together with upregulated expression of markers CD68 and CD163.In our FD mouse model, the observed phenotypic changes in myeloid cell populations of the DRG suggest enhanced phagocytic and unaltered proliferative capacity of macrophages as compared to wildtype control mice. We suggest that macrophages may participate in FD pathogenesis and targeting macrophages at an early stage of FD may offer new treatment options other than enzyme replacement therapy.

2.
Pharmaceutics ; 15(3)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36986714

ABSTRACT

Cannabis sativa plants contain a multitude of bioactive substances, which show broad variability between different plant strains. Of the more than a hundred naturally occurring phytocannabinoids, Δ9-Tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) have been the most extensively studied, but whether and how the lesser investigated compounds in plant extracts affect bioavailability or biological effects of Δ9-THC or CBD is not known. We therefore performed a first pilot study to assess THC concentrations in plasma, spinal cord and brain after oral administration of THC compared to medical marijuana extracts rich in THC or depleted of THC. Δ9-THC levels were higher in mice receiving the THC-rich extract. Surprisingly, only orally applied CBD but not THC alleviated mechanical hypersensitivity in the mouse spared nerve injury model, favoring CBD as an analgesic compound for which fewer unwanted psychoactive effects are to be expected.

4.
Pain ; 163(3): 579-589, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34252913

ABSTRACT

ABSTRACT: Peripheral nerve injuries result in pronounced alterations in dorsal root ganglia, which can lead to the development of neuropathic pain. Although the polymodal mechanosensitive transient receptor potential ankyrin 1 (TRPA1) ion channel is emerging as a relevant target for potential analgesic therapies, preclinical studies do not provide unequivocal mechanistic insight into its relevance for neuropathic pain pathogenesis. By using a transgenic mouse model with a conditional depletion of the interleukin-6 (IL-6) signal transducer gp130 in Nav1.8 expressing neurons (SNS-gp130-/-), we provide a mechanistic regulatory link between IL-6/gp130 and TRPA1 in the spared nerve injury (SNI) model. Spared nerve injury mice developed profound mechanical hypersensitivity as indicated by decreased withdrawal thresholds in the von Frey behavioral test in vivo, as well as a significant increase in mechanosensitivity of unmyelinated nociceptive primary afferents in ex vivo skin-nerve recordings. In contrast to wild type and control gp130fl/fl animals, SNS-gp130-/- mice did not develop mechanical hypersensitivity after SNI and exhibited low levels of Trpa1 mRNA in sensory neurons, which were partially restored by adenoviral gp130 re-expression in vitro. Importantly, uninjured but not injured neurons developed increased responsiveness to the TRPA1 agonist cinnamaldehyde, and neurons derived from SNS-gp130-/- mice after SNI were significantly less responsive to cinnamaldehyde. Our study shows for the first time that TRPA1 upregulation is attributed specifically to uninjured neurons in the SNI model, and this depended on the IL-6 signal transducer gp130. We provide a solution to the enigma of TRPA1 regulation after nerve injury and stress its significance as an important target for neuropathic pain disorders.


Subject(s)
Ankyrins , Cytokine Receptor gp130/genetics , Neuralgia , Animals , Ankyrins/genetics , Ganglia, Spinal/pathology , Hyperalgesia , Mice , Neuralgia/genetics , Neuralgia/pathology , Sensory Receptor Cells , TRPA1 Cation Channel/genetics , Up-Regulation
5.
Adv Sci (Weinh) ; 8(21): e2102354, 2021 11.
Article in English | MEDLINE | ID: mdl-34486248

ABSTRACT

Nociceptors are primary afferent neurons serving the reception of acute pain but also the transit into maladaptive pain disorders. Since native human nociceptors are hardly available for mechanistic functional research, and rodent models do not necessarily mirror human pathologies in all aspects, human induced pluripotent stem cell-derived nociceptors (iDN) offer superior advantages as a human model system. Unbiased mRNA::microRNA co-sequencing, immunofluorescence staining, and qPCR validations, reveal expression trajectories as well as miRNA target spaces throughout the transition of pluripotent cells into iDNs. mRNA and miRNA candidates emerge as regulatory hubs for neurite outgrowth, synapse development, and ion channel expression. The exploratory data analysis tool NOCICEPTRA is provided as a containerized platform to retrieve experimentally determined expression trajectories, and to query custom gene sets for pathway and disease enrichments. Querying NOCICEPTRA for marker genes of cortical neurogenesis reveals distinct similarities and differences for cortical and peripheral neurons. The platform provides a public domain neuroresource to exploit the entire data sets and explore miRNA and mRNA as hubs regulating human nociceptor differentiation and function.


Subject(s)
Cell Differentiation/genetics , MicroRNAs/metabolism , User-Computer Interface , Cell Line , Gene Regulatory Networks/genetics , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Nociceptors/cytology , Nociceptors/metabolism , RNA, Messenger/metabolism , Transcriptome
6.
Cytokine ; 144: 155582, 2021 08.
Article in English | MEDLINE | ID: mdl-34058569

ABSTRACT

The pleiotropic cytokine interleukin-6 (IL-6) is emerging as a molecule with both beneficial and destructive potentials. It can exert opposing actions triggering either neuron survival after injury or causing neurodegeneration and cell death in neurodegenerative or neuropathic disorders. Importantly, neurons respond differently to IL-6 and this critically depends on their environment and whether they are located in the peripheral or the central nervous system. In addition to its hub regulator role in inflammation, IL-6 is recently emerging as an important regulator of neuron function in health and disease, offering exciting possibilities for more mechanistic insight into the pathogenesis of mental, neurodegenerative and pain disorders and for developing novel therapies for diseases with neuroimmune and neurogenic pathogenic components.


Subject(s)
Cell Survival/physiology , Interleukin-6/metabolism , Neurons/metabolism , Animals , Central Nervous System/metabolism , Humans , Inflammation/metabolism , Neurodegenerative Diseases/metabolism
7.
Eur J Neurosci ; 53(12): 3905-3919, 2021 06.
Article in English | MEDLINE | ID: mdl-32333816

ABSTRACT

Fras1 is an extracellular protein of the basement membranes that surround embryonic epithelia, choroid plexuses and meninges in foetal mouse brain. Depletion of Fras1 in knockout mice results in sub-epidermal blistering and fusion of eyelids and digits as well as malformation of lungs and kidneys. Mutations in the human counterpart FRAS1 are responsible for the Fraser Syndrome with clinical manifestations similar to the murine phenotype. In addition, brain deformities or mental impairments have occasionally been reported in patients with Fraser Syndrome. In the present study, we explored the possible involvement of Fras1 in brain function, analysing its expression pattern in mouse brain and investigating aspects of Fras1-/- mice behaviour, related to the function of brain regions expressing Fras1. Transcripts were detected in choroid plexuses and in certain brain regions including cortical, hippocampal and amygdalar areas in juvenile mice. Behavioural tests revealed that Fras1-/- mice exhibit impaired egocentric spatial memory, aberrant olfactory learning and memory, markedly reduced fear memory in an auditory fear conditioning task, as well as reduced anxiety expression in open field and elevated plus maze tests. Moreover, the extracellular matrix organization has been severely affected in cortical and subcortical areas as demonstrated by Wisteria floribunda agglutinin immunolabelling. The widespread detection of Fras1 transcripts in the brain of both pre- and postnatal mice, as well as the behavioural and cellular disturbances exhibited by Fras1-/- adult mice provide evidence for the involvement of Fras1 in brain organization and function.


Subject(s)
Behavior, Animal , Epidermis , Extracellular Matrix Proteins , Animals , Basement Membrane , Extracellular Matrix Proteins/genetics , Fear , Learning , Mice , Mice, Knockout , Phenotype , Spatial Memory
8.
Front Immunol ; 11: 2119, 2020.
Article in English | MEDLINE | ID: mdl-33072073

ABSTRACT

Neurotoxicity is a common side effect of chemotherapeutics that often leads to the development of chemotherapy-induced peripheral neuropathy (CIPN). The peptide Prokineticin 2 (PK2) has a key role in experimental models of CIPN and can be considered an insult-inducible endangering mediator. Since primary afferent sensory neurons are highly sensitive to anticancer drugs, giving rise to dysesthesias, the aim of our study was to evaluate the alterations induced by vincristine (VCR) and bortezomib (BTZ) exposure in sensory neuron cultures and the possible preventive effect of blocking PK2 signaling. Both VCR and BTZ induced a concentration-dependent reduction of total neurite length that was prevented by the PK receptor antagonist PC1. Antagonizing the PK system also reduced the upregulation of PK2, PK-R1, TLR4, IL-6, and IL-10 expression induced by chemotherapeutic drugs. In conclusion, inhibition of PK signaling with PC1 prevented the neurotoxic effects of chemotherapeutics, suggesting a promising strategy for neuroprotective therapies against the sensory neuron damage induced by exposure to these drugs.


Subject(s)
Antineoplastic Agents/toxicity , Bortezomib/toxicity , Gastrointestinal Hormones/antagonists & inhibitors , Nerve Tissue Proteins/antagonists & inhibitors , Neuropeptides/antagonists & inhibitors , Neuroprotective Agents/pharmacology , Neurotoxicity Syndromes/prevention & control , Sensory Receptor Cells/drug effects , Triazines/pharmacology , Vincristine/toxicity , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Down-Regulation , Drug Evaluation, Preclinical , Gastrointestinal Hormones/physiology , Gene Expression Regulation/drug effects , Male , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/physiology , Neurites/drug effects , Neurites/ultrastructure , Neuroimmunomodulation/drug effects , Neuropeptides/physiology , Neuroprotective Agents/therapeutic use , RNA, Messenger/biosynthesis , Sensory Receptor Cells/physiology , Sensory Receptor Cells/ultrastructure , Triazines/therapeutic use
9.
Neuronal Signal ; 4(1): NS20190099, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32587755

ABSTRACT

Neuro-immune alterations in the peripheral and central nervous system play a role in the pathophysiology of chronic pain in general, and members of the non-coding RNA (ncRNA) family, specifically the short, 22 nucleotide microRNAs (miRNAs) and the long non-coding RNAs (lncRNAs) act as master switches orchestrating both immune as well as neuronal processes. Several chronic disorders reveal unique ncRNA expression signatures, which recently generated big hopes for new perspectives for the development of diagnostic applications. lncRNAs may offer perspectives as candidates indicative of neuropathic pain in liquid biopsies. Numerous studies have provided novel mechanistic insight into the role of miRNAs in the molecular sequelae involved in the pathogenesis of neuropathic pain along the entire pain pathway. Specific processes within neurons, immune cells, and glia as the cellular components of the neuropathic pain triad and the communication paths between them are controlled by specific miRNAs. Therefore, nucleotide sequences mimicking or antagonizing miRNA actions can provide novel therapeutic strategies for pain treatment, provided their human homologues serve the same or similar functions. Increasing evidence also sheds light on the function of lncRNAs, which converge so far mainly on purinergic signalling pathways both in neurons and glia, and possibly even other ncRNA species that have not been explored so far.

10.
Int J Mol Sci ; 21(10)2020 May 13.
Article in English | MEDLINE | ID: mdl-32414089

ABSTRACT

Chronic pain patients frequently develop and suffer from mental comorbidities such as depressive mood, impaired cognition, and other significant constraints of daily life, which can only insufficiently be overcome by medication. The emotional and cognitive components of pain are processed by the medial prefrontal cortex, which comprises the anterior cingulate cortex, the prelimbic, and the infralimbic cortex. All three subregions are significantly affected by chronic pain: magnetic resonance imaging has revealed gray matter loss in all these areas in chronic pain conditions. While the anterior cingulate cortex appears hyperactive, prelimbic, and infralimbic regions show reduced activity. The medial prefrontal cortex receives ascending, nociceptive input, but also exerts important top-down control of pain sensation: its projections are the main cortical input of the periaqueductal gray, which is part of the descending inhibitory pain control system at the spinal level. A multitude of neurotransmitter systems contributes to the fine-tuning of the local circuitry, of which cholinergic and GABAergic signaling are particularly emerging as relevant components of affective pain processing within the prefrontal cortex. Accordingly, factors such as distraction, positive mood, and anticipation of pain relief such as placebo can ameliorate pain by affecting mPFC function, making this cortical area a promising target region for medical as well as psychosocial interventions for pain therapy.


Subject(s)
Chronic Pain/physiopathology , Gyrus Cinguli/physiopathology , Neurons/drug effects , Prefrontal Cortex/physiopathology , Animals , Chronic Pain/complications , Chronic Pain/drug therapy , Cognition Disorders/complications , Cognition Disorders/drug therapy , Cognition Disorders/physiopathology , Depressive Disorder/complications , Depressive Disorder/drug therapy , Depressive Disorder/physiopathology , Gray Matter/drug effects , Gyrus Cinguli/drug effects , Humans , Neural Pathways/pathology , Neurons/pathology , Prefrontal Cortex/drug effects , Synaptic Transmission/drug effects
11.
Front Mol Neurosci ; 12: 283, 2019.
Article in English | MEDLINE | ID: mdl-31824261

ABSTRACT

MicroRNAs (miRNAs) have emerged as master switch regulators in many biological processes in health and disease, including neuropathy. miRNAs are commonly quantified by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), usually estimated as relative expression through reference genes normalization. Different non-coding RNAs (ncRNAs) are used for miRNA normalization; however, there is no study identifying the optimal reference genes in animal models for peripheral nerve injury. We evaluated the stability of eleven ncRNAs, commonly used for miRNA normalization, in dorsal root ganglia (DRG), dorsal horn of the spinal cord (dhSC), and medial prefrontal cortex (mPFC) in the mouse spared nerve injury (SNI) model. After RT-qPCR, the stability of each ncRNA was determined by using four different methods: BestKeeper, the comparative delta-Cq method, geNorm, and NormFinder. The candidates were rated according to their performance in each method and an overall ranking list was compiled. The most stable ncRNAs were: sno420, sno429, and sno202 in DRG; sno429, sno202, and U6 in dhSC; sno202, sno420, and sno142 in mPFC. We provide the first reference genes' evaluation for miRNA normalization in different neuronal tissues in an animal model of peripheral nerve injury. Our results underline the need for careful selection of reference genes for miRNA normalization in different tissues and experimental conditions. We further anticipate that our findings can be used in a broad range of nerve injury related studies, to ensure validity and promote reproducibility in miRNA quantification.

12.
Cells ; 8(6)2019 06 15.
Article in English | MEDLINE | ID: mdl-31208035

ABSTRACT

Numerous experimental studies demonstrate that the Ras homolog family of guanosine triphosphate hydrolases (Rho GTPases) Ras homolog family member A (RhoA), Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division cycle 42 (Cdc42) are important regulators in somatosensory neurons, where they elicit changes in the cellular cytoskeleton and are involved in diverse biological processes during development, differentiation, survival and regeneration. This review summarizes the status of research regarding the expression and the role of the Rho GTPases in peripheral sensory neurons and how these small proteins are involved in development and outgrowth of sensory neurons, as well as in neuronal regeneration after injury, inflammation and pain perception. In sensory neurons, Rho GTPases are activated by various extracellular signals through membrane receptors and elicit their action through a wide range of downstream effectors, such as Rho-associated protein kinase (ROCK), phosphoinositide 3-kinase (PI3K) or mixed-lineage kinase (MLK). While RhoA is implicated in the assembly of stress fibres and focal adhesions and inhibits neuronal outgrowth through growth cone collapse, Rac1 and Cdc42 promote neuronal development, differentiation and neuroregeneration. The functions of Rho GTPases are critically important in the peripheral somatosensory system; however, their signalling interconnections and partially antagonistic actions are not yet fully understood.


Subject(s)
Sensory Receptor Cells/pathology , Sensory Receptor Cells/physiology , rho GTP-Binding Proteins/metabolism , Animals , Humans , Nerve Degeneration/pathology , Neurites/metabolism , Nociception , Peripheral Nerve Injuries/pathology
13.
FASEB J ; 33(3): 4418-4431, 2019 03.
Article in English | MEDLINE | ID: mdl-30586315

ABSTRACT

TNF-α-converting enzyme, a member of the ADAM (A disintegrin and metalloproteinase) protease family and also known as ADAM17, regulates inflammation and regeneration in health and disease. ADAM17 targets are involved in pain development and hypersensitivity in animal models of inflammatory and neuropathic pain. However, the role of ADAM17 in the pain pathway is largely unknown. Therefore, we used the hypomorphic ADAM17 (ADAM17ex/ex) mouse model to investigate the importance of ADAM17 in nociceptive behavior, morphology, and function of primary afferent nociceptors. ADAM17ex/ex mice were hyposensitive to noxious stimulation, showing elevated mechanical thresholds as well as impaired heat and cold sensitivity. Despite these differences, skin thickness and innervation were comparable to controls. Although dorsal root ganglia of ADAM17ex/ex mice exhibited normal morphology of peptidergic and nonpeptidergic neurons, a small but significant reduction in the number of isolectin ß-4-positive neurons was observed. Functional electrical properties of unmyelinated nociceptors showed differences in resting membrane potential, afterhyperpolarization, and firing patterns in specific subpopulations of sensory neurons in ADAM17ex/ex mice. However, spinal cord morphology and microglia activity in ADAM17ex/ex mice were not altered. Our data suggest that ADAM17 contributes to the processing of painful stimuli, with a complex mode of action orchestrating the function of neurons along the pain pathway.-Quarta, S., Mitric, M., Kalpachidou, T., Mair, N., Schiefermeier-Mach, N., Andratsch, M., Qi, Y., Langeslag, M., Malsch, P., Rose-John, S., Kress, M. Impaired mechanical, heat, and cold nociception in a murine model of genetic TACE/ADAM17 knockdown.


Subject(s)
ADAM17 Protein/physiology , Hypesthesia/genetics , Nerve Tissue Proteins/physiology , Nociception/physiology , ADAM17 Protein/deficiency , ADAM17 Protein/genetics , Action Potentials , Afferent Pathways/physiology , Animals , Cell Count , Cells, Cultured , Cold Temperature/adverse effects , Ganglia, Spinal/cytology , Ganglia, Spinal/pathology , Gene Knockdown Techniques , Glycoproteins/analysis , Hot Temperature/adverse effects , Hypesthesia/pathology , Hypesthesia/physiopathology , Male , Membrane Potentials , Mice , Microglia/pathology , Nerve Fibers, Unmyelinated/physiology , Nerve Fibers, Unmyelinated/ultrastructure , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Neurons, Afferent/chemistry , Neurons, Afferent/classification , Neurons, Afferent/physiology , Pain Threshold , Patch-Clamp Techniques , Single-Blind Method , Skin/innervation , Spinal Cord/pathology , Stress, Mechanical
14.
Front Mol Neurosci ; 11: 201, 2018.
Article in English | MEDLINE | ID: mdl-30013462

ABSTRACT

Fabry disease is an X-chromosome linked hereditary disease that is caused by loss of function mutations in the α-galactosidase A (α-Gal A) gene, resulting in defective glycolipid degradation and subsequent accumulation of globotriaosylceramide (Gb3) in different tissues, including vascular endothelial cells and neurons in the peripheral and central nervous system. We recently reported a differential gene expression profile of α-Gal A(-/0) mouse dorsal root ganglia, an established animal model of Fabry disease, thereby providing new gene targets that might underlie the neuropathic pain related symptoms. To investigate the cognitive symptoms experienced by Fabry patients, we performed one-color based hybridization microarray expression profiling of prefrontal cortex samples from adult α-Gal A(-/0) mice and age-matched wildtype controls, followed by protein-protein interaction and pathway analyses for the differentially regulated mRNAs. We found that from a total of 381 differentially expressed genes, 135 genes were significantly upregulated, whereas 246 genes were significantly downregulated between α-Gal A(-/0) mice and wildtype controls. Enrichment analysis for downregulated genes revealed mainly immune related pathways, including immune/defense responses, regulation of cytokine production, as well as signaling and transport regulation pathways. Further analysis of the regulated genes revealed a large number of genes involved in neurodegeneration. The current analysis for the first time presents a differential gene expression profile of central nervous system tissue from α-Gal A(-/0) mice, thereby providing novel knowledge on the deregulation and a possible contribution of gene expression to Fabry disease related brain pathologies.

15.
Physiol Behav ; 184: 46-54, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29127070

ABSTRACT

Adverse early life experiences can affect adaptability to chronic stressors and lead to depressive-like behaviors in animal models. We employed an early experience model in which rat pups during postnatal days 10-13 are exposed to a T-maze in which they learn the location of their mother motivated by the rewarding stimulus of maternal contact; one group of rats receives the expected reward, by being allowed contact with the mother upon finding her, while the other group is temporarily denied this contact (Denied Expected Reward, DER), thus experiencing mild adversity. The results presented herein show that the DER early life experience results in a depressive-like phenotype in adulthood, as indicated by the absence of sucrose preference -anhedonia- exhibited by these animals, in adulthood. Following exposure to a chronic social stress (CSS), DER male rats were unable to adapt, evident by reduced general locomotion and time spent in the centre of an open field which indicate anxiety and/or decreased motivation for exploration. They also exhibited increased immobility time in the forced swimming test, suggesting a passive coping strategy. The depressive-like and anxious phenotype of the DER males was accompanied by changes in the serotonergic system, such as lower serotonin levels, higher serotonin turnover and higher levels of the type 1 serotonin receptor in the hippocampus. Our results corroborate findings showing that early life adversity disturbs behavioral regulation in adulthood. They also suggest that even mild adversity, if it involves intervention in mother-offspring interactions, can be sufficient to compromise adaptability.


Subject(s)
Adaptation, Psychological/physiology , Depression/etiology , Maternal Deprivation , Serotonin/metabolism , Stress, Psychological/complications , Animals , Animals, Newborn , Brain/metabolism , Disease Models, Animal , Exploratory Behavior/physiology , Food Preferences/psychology , Indoles/metabolism , Male , Rats , Rats, Wistar , Receptor, Serotonin, 5-HT1A/metabolism , Stress, Psychological/pathology , Sucrose/administration & dosage , Swimming/psychology
16.
Front Neurol ; 8: 335, 2017.
Article in English | MEDLINE | ID: mdl-28769867

ABSTRACT

The first symptom arising in many Fabry patients is neuropathic pain due to changes in small myelinated and unmyelinated fibers in the periphery, which is subsequently followed by a loss of sensory perception. Here we studied changes in the peripheral nervous system of Fabry patients and a Fabry mouse model induced by deletion of α-galactosidase A (Gla-/0). The skin innervation of Gla-/0 mice resembles that of the human Fabry patients. In Fabry diseased humans and Gla-/0 mice, we observed similar sensory abnormalities, which were also observed in nerve fiber recordings in both patients and mice. Electrophysiological recordings of cultured Gla-/0 nociceptors revealed that the conductance of voltage-gated Na+ and Ca2+ currents was decreased in Gla-/0 nociceptors, whereas the activation of voltage-gated K+ currents was at more depolarized potentials. Conclusively, we have observed that reduced sensory perception due to small-fiber degeneration coincides with altered electrophysiological properties of sensory neurons.

17.
Front Mol Neurosci ; 10: 449, 2017.
Article in English | MEDLINE | ID: mdl-29422837

ABSTRACT

Fabry disease is an X-linked lysosomal storage disorder with involvement of the nervous system. Accumulation of glycosphingolipids within peripheral nerves and/or dorsal root ganglia results in pain due to small-fiber neuropathy, which affects the majority of patients already in early childhood. The α-galactosidase A deficient mouse proved to be an adequate model for Fabry disease, as it shares many symptoms including altered temperature sensitivity and pain perception. To characterize the signatures of gene expression that might underlie Fabry disease-associated sensory deficits and pain, we performed one-color based hybridization microarray expression profiling of DRG explants from adult α-galactosidase A deficient mice and age-matched wildtype controls. Protein-protein interaction (PPI) and pathway analyses were performed for differentially regulated mRNAs. We found 812 differentially expressed genes between adult α-galactosidase A deficient mice and age-matched wildtype controls, 506 of them being upregulated, and 306 being downregulated. Among the enriched pathways and processes, the disease-specific pathways "lysosome" and "ceramide metabolic process" were identified, enhancing reliability of the current analysis. Novel pathways that we identified include "G-protein coupled receptor signaling" and "retrograde transport" for the upregulated genes. From the analysis of downregulated genes, immune-related pathways, autoimmune, and infection pathways emerged. The current analysis is the first to present a differential gene expression profile of DRGs from α-galactosidase A deficient mice, thereby providing knowledge on possible mechanisms underlying neuropathic pain related symptoms in Fabry patients. Therefore, the presented data provide new insights into the development of the pain phenotype and might lead to new treatment strategies.

18.
Front Cell Neurosci ; 10: 258, 2016.
Article in English | MEDLINE | ID: mdl-27872583

ABSTRACT

Understanding the role of the bioactive lipid mediator sphingosine 1-phosphate (S1P) within the central nervous system has recently gained more and more attention, as it has been connected to major diseases such as multiple sclerosis and Alzheimer's disease. Even though much data about the functions of the five S1P receptors has been collected for other organ systems, we still lack a complete understanding for their specific roles, in particular within the brain. Therefore, it was the aim of this study to further elucidate the role of S1P receptor subtype 3 (S1P3) in vivo and in vitro with a special focus on the hippocampus. Using an S1P3 knock-out mouse model we applied a range of behavioral tests, performed expression studies, and whole cell patch clamp recordings in acute hippocampal slices. We were able to show that S1P3 deficient mice display a significant spatial working memory deficit within the T-maze test, but not in anxiety related tests. Furthermore, S1p3 mRNA was expressed throughout the hippocampal formation. Principal neurons in area CA3 lacking S1P3 showed significantly increased interspike intervals and a significantly decreased input resistance. Upon stimulation with S1P CA3 principal neurons from both wildtype and [Formula: see text] mice displayed significantly increased evoked EPSC amplitudes and decay times, whereas rise times remained unchanged. These results suggest a specific involvement of S1P3 for the establishment of spatial working memory and neuronal excitability within the hippocampus.

19.
J Neurochem ; 136(1): 78-91, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26490262

ABSTRACT

Neurofibromatosis type-1 (NF-1) is caused by mutations in the tumor suppressor gene NF1; its protein product neurofibromin is a RasGTPase-activating protein, a property that has yet to explain aneuploidy, most often observed in astrocytes in NF-1. Here, we provide a mechanistic model for the regulated nuclear import of neurofibromin during the cell cycle and for a role in chromosome congression. Specifically, we demonstrate that neurofibromin, phosphorylated on Ser2808, a residue adjacent to a nuclear localization signal in the C-terminal domain (CTD), by Protein Kinase C-epsilon (PKC-ε), accumulates in a Ran-dependent manner and through binding to lamin in the nucleus at G2 in glioblastoma cells. Furthermore, we identify CTD as a tubulin-binding domain and show that a phosphomimetic substitution of its Ser2808 results in a predominantly nuclear localization. Confocal analysis shows that endogenous neurofibromin localizes on the centrosomes at interphase, as well as on the mitotic spindle, through direct associations with tubulins, in glioblastoma cells and primary astrocytes. More importantly, analysis of mitotic phenotypes after siRNA-mediated depletion shows that acute loss of this tumor suppressor protein leads to aberrant chromosome congression at the metaphase plate. Therefore, neurofibromin protein abundance and nuclear import are mechanistically linked to an error-free chromosome congression. Concerned with neurofibromin's, a tumor suppressor, mechanism of action, we demonstrate in astrocytic cells that its synthesis, phosphorylation by Protein Kinase C-ε on Ser2808 (a residue adjacent to a nuclear localization sequence), and nuclear import are cell cycle-dependent, being maximal at G2. During mitosis, neurofibromin is an integral part of the spindle, while its depletion leads to aberrant chromosome congression, possibly explaining the development of chromosomal instability in Neurofibromatosis type-1. Read the Editorial Highlight for this article on page 11. Cover Image for this issue: doi: 10.1111/jnc.13300.


Subject(s)
Active Transport, Cell Nucleus/physiology , Cell Nucleus/metabolism , Chromosomes/metabolism , Neurofibromin 1/metabolism , Spindle Apparatus/metabolism , Cell Line, Tumor , Cell Nucleus/chemistry , Cell Nucleus/genetics , Chromosomes/genetics , HEK293 Cells , Humans , Neurofibromatosis 1/genetics , Neurofibromatosis 1/metabolism , Neurofibromin 1/analysis , Neurofibromin 1/genetics , Spindle Apparatus/genetics
20.
Brain Struct Funct ; 221(8): 4141-4157, 2016 11.
Article in English | MEDLINE | ID: mdl-26642796

ABSTRACT

Aversive early life experiences in humans have been shown to result in deficits in the function of the prefrontal cortex (PFC). In an effort to elucidate possible neurobiological mechanisms involved, we investigated in rats, the effects of a mildly aversive early experience on PFC structure and function. The early experience involved exposure of rat pups during postnatal days (PND) 10-13 to a T-maze in which they search for their mother, but upon finding her are prohibited contact with her, thus being denied the expected reward (DER). We found that the DER experience resulted in adulthood in impaired PFC function, as assessed by two PFC-dependent behavioral tests [attention set-shifting task (ASST) and fear extinction]. In the ASST, DER animals showed deficits specifically in the intra-dimensional reversal shifts and a lower activation-as determined by c-Fos immunohistochemistry-of the medial orbital cortex (MO), a PFC subregion involved in this aspect of the task. Furthermore, the DER experience resulted in decreased glutamatergic neuron and dendritic spine density in the MO and infralimbic cortex (IL) in the adult brain. The decreased neuronal density was detected as early as PND12 and was accompanied by increased micro- and astroglia-density in the MO/IL.


Subject(s)
Behavior, Animal , Maternal Deprivation , Neurons/physiology , Prefrontal Cortex/physiopathology , Animals , Attention/physiology , Cell Count , Dendritic Spines/physiology , Extinction, Psychological/physiology , Fear/physiology , Female , Male , Neurons/metabolism , Prefrontal Cortex/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Wistar , Reward
SELECTION OF CITATIONS
SEARCH DETAIL
...