Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 21568, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33298984

ABSTRACT

In many developing countries, there are certain health problems faced by the public, one among them is Malaria. This tropical disease is mainly caused by Plasmodium falciparum. It is categorized as a disaster to public health, which increases both mortality and morbidity. Numerous drugs are in practice to control this disease and their vectors. Eco-friendly control tools are required to battle against vector of this significant disease. Nanotechnology plays a major role in fighting against malaria. The present paper synthesized Zinc oxide nanoparticles (ZnO NPs) using zinc nitrate via simple green routes with the help of aqueous peel extract of Lagenaria siceraria (L. siceraria). The synthesized ZnO NPs were characterized by various biophysical methods. Moreover, the extract of L. siceraria and their mediated ZnO NPs was experimented against III instar larvae of An. stephensi. The impact of the treatment based on ZnO NPs concerning histology and morphology of mosquito larval was further observed. In the normal laboratory environment, the efficiency of predation of Poeciliareticulata (P. reticulata) against An. Stephensi larvae was found to be 44%, whereas in aqueous L. siceraria extract and its mediated ZnO NPs contaminated environment, P. reticulate showed predation efficiency of about 45.8% and 61.13% against An. Stephensi larva. L. siceraria synthesized ZnO NPs were examined against the Plasmodium falciparum CQ-sensitive strains. The L. siceraria extract and its mediated ZnO NPs showed the cytotoxic effects against HeLa cell lines with an IC50 value of 62.5 µg/mL. This study concludes that L. siceraria peel extract and L. siceraria synthesized ZnO NPs represent a valuable green option to fight against malarial vectors and parasites.


Subject(s)
Anopheles/parasitology , Insecticides/pharmacology , Nanoparticles/administration & dosage , Plasmodium falciparum/drug effects , Zinc Oxide/administration & dosage , Animals , Cell Survival/drug effects , HeLa Cells , Humans , Mosquito Vectors
2.
Bioinorg Chem Appl ; 2018: 3569758, 2018.
Article in English | MEDLINE | ID: mdl-30154832

ABSTRACT

The advance of reliable and eco-friendly strategies for the development of nanoparticles is a fundamental key to the discipline of nanotechnology. Nanoparticles have been continuously evaluated and have been used in many industrial applications for a decade. In particular, the role of zinc oxide nanoparticles (ZnO NPs) has received a great interest because of various properties such as UV filter properties and photochemical, antifungal, high catalyst, and antimicrobial activities. Because of the high rate of poisonous chemicals and the extreme surroundings used within the chemical and physical methods, the green techniques have been adopted using plants, fungi, bacteria, and algae for the synthesis of nanoparticles. Therefore, this paper considers various green synthesis methods to provide the evidence of ZnO NP role to several applications, and in addition, biomedical applications and toxic effect were reviewed. Therefore, the paper used various secondary sources to collect the relevant review articles. From the findings, the green route of synthesis is rather safe and eco-friendly when compared to physical and chemical means of synthesis. On the other hand, its biomedical applications in this sector are increased day by day in various processes including bioimaging, drug delivery, biosensors, and gene delivery. With respect to its toxicity properties, ZnO NPs can act as smart weapons against multiple drug-resistant microorganisms and as a talented substitute for antibiotics.

3.
Biochem Biophys Rep ; 12: 193-197, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29090281

ABSTRACT

The main objective of this research is to investigate the anti-biofilm and anti-bacterial activity of Sesbania grandiflora (S. grandiflora) against Staphylococcus aureus. S. grandiflora extract were prepared and analyzed with UV -Vis spectroscopy, Fourier transform infrared spectroscopy, Dynamic light scattering. Biofilm forming pathogens were identified by congo-red assay. Quantification of Extracellular polymeric substance (EPS) particularly protein and carbohydrate were calculated. The efficacy of the herbal extract S. grandiflora and its inhibition against the pathogenic strain of S. aureus was also evaluated. The gradual decrease or disappearance of peaks reveals the reduction of protein and carbohydrate content in the EPS of S. aureus when treated with S. grandiflora. The antibacterial activity of S. grandiflora extract against the bacterial strain S. aureus showed that the extract were more active against the strain. To conclude, anti-biofilm and antibacterial efficacy of S. grandiflora plays a vital role over biofilm producing pathogens and act as a good source for controlling the microbial population.

4.
Microb Pathog ; 103: 123-128, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28025099

ABSTRACT

The aim of this study is to develop an easy and eco-friendly method for the synthesis of Ag-NPs using extracts from the medicinal plant, Millettia pinnata flower extract and investigate the effects of Ag-NPs on acetylcholinesterase (AChE), butyrylcholinesterase (BChE), antibacterial and cytotoxicity activity. UV-Vis peak at 438 nm confirmed the Ag-NPs absorbance. The SEM analysis results confirmed the presence of spherical shaped Ag-NPs by a huge disparity in the particle size distribution with an average size of 49 ± 0.9 nm. TEM images revealed the formation of Ag-NPs with spherical shape and sizes in the range between 16 and 38 nm. The Ag-NPs showed an excellent inhibitory efficacy against AChE and BChE. The highest antibacterial activity was found against Escherichia coli (20.25 ± 0.91 mm). These nanoparticles showed the cytotoxic effects against brine shrimp (artemia saliana) nauplii with a LD50 value of 33.92.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cholinesterase Inhibitors/pharmacology , Flowers/chemistry , Metal Nanoparticles , Millettia/chemistry , Plant Extracts/pharmacology , Silver , Animals , Anti-Bacterial Agents/chemistry , Cholinesterase Inhibitors/chemistry , Enzyme Activation/drug effects , Green Chemistry Technology , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Microbial Sensitivity Tests , Photoelectron Spectroscopy , Plant Extracts/chemistry , Silver/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
5.
Appl Microbiol Biotechnol ; 100(3): 1153-1162, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26637422

ABSTRACT

Bottle gourd (Lagenaria siceraria) belongs to the family Cucurbitaceae, which comprises about 118 genera and 825 species. It is an important vegetable crop of India, and its production is influenced by a number of factors viz., environmental, nutritional, cultural operation and use of plant growth regulators. Since, bottle gourd belongs to a medicinal family, it plays a major role in the treatment of several diseases related to the skin and heart. There are several organic chemical compounds including vitamin B complex, pectin, dietary soluble fibres, ascorbic acid, beta-carotene, amino acids and minerals which have been isolated from this species. Therefore, the bottle gourd is considered to have a great impact on therapeutic health benefits. Due to drastic industrialization and urbanization, most of the human beings are facing several ill effects which may lead to death at extreme cases. Hence, the major research area was said to be nanotechnology. Taking into consideration, we have combined nanotechnology field with waste source in the name of green synthesis and planned to cure several diseases, as most of the researchers focused their work on this and succeeded too. The present study is a complete review of L. siceraria that covers the ethnomedical uses, chemical constituents, and pharmacological profile. This study is mainly focused on the antibacterial, hepatoprotective, diuretic and anthelminthic activities.


Subject(s)
Cucurbita/chemistry , Plant Extracts/pharmacology , Cucurbita/classification , Humans , India , Plant Extracts/chemistry , Vegetables/chemistry , Vegetables/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...