Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
2.
Viruses ; 15(7)2023 07 12.
Article in English | MEDLINE | ID: mdl-37515218

ABSTRACT

An enveloped double-stranded DNA monkeypox virus (MPXV) is a causative agent of the zoonotic viral disease, human monkeypox (HMPX). MPXV belongs to the genus Orthopoxviridae, a family of notorious smallpox viruses, and so it shares similar clinical pathophysiological features. The recent multicountry HMPX outbreak (May 2022 onwards) is recognized as an emerging global public health emergency by the World Health Organization, shunting its endemic status as opined over the past few decades. Re-emergence of HMPX raises concern to reassess the present clinical strategy and therapeutics as its outbreak evolves further. Keeping a check on these developments, here we provide insights into the HMPX epidemiology, pathophysiology, and clinical representation. Weighing on its early prevention, we reviewed the strategies that are being enrolled for HMPX diagnosis. In the line of expanded MPXV prevalence, we further reviewed its clinical management and the diverse employed preventive/therapeutic strategies, including vaccines (JYNNEOS, ACAM2000, VIGIV) and antiviral drugs/inhibitors (Tecovirimat, Cidofovir, Brincidofovir). Taken together, with a revised perspective of HMPX re-emergence, the present report summarizes new knowledge on its prevalence, pathology, and prevention strategies.


Subject(s)
Mpox (monkeypox) , Humans , Animals , Mpox (monkeypox)/drug therapy , Mpox (monkeypox)/epidemiology , Mpox (monkeypox)/prevention & control , Monkeypox virus , Disease Outbreaks , Zoonoses
3.
Exp Cell Res ; 429(2): 113669, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37276997

ABSTRACT

Discovery of CARF (Collaborator of ARF)/CDKN2AIP as an ARF-interacting protein that promotes ARF-p53-p21WAF1 signaling and cellular senescence, initially established its role in genomic stress. Multiple reports further unraveled its role in regulation of senescence, growth arrest, apoptosis, or malignant transformation of cells in response to a variety of stress conditions in cultured human cells. It has been established as an essential protein. Whereas CARF-compromised cells undergo apoptosis, its enrichment has been recorded in a variety of cancer cells and has been associated with malignant transformation. We earlier demonstrated its role in stress-induced cell phenotypes that ranged from growth arrest, apoptosis, or malignant transformation. In the present study, we assessed the molecular mechanism of quantitative impact of change in CARF expression level on these cell fates. Stress-induced changes in CARF expression were assessed quantitatively with proteins involved in proteotoxicity, oxidative, genotoxic, and cytotoxic stress. These comparative quantitative analyses confirmed that (i) CARF responds to diverse stresses in a quantitative manner, (ii) its expression level serves as a reliable predictive measure of cell fates (iii) it correlates more with the DNA damage and MDA levels than the oxidative and proteotoxic signatures and (iv) CARF-expression based quantitative assay may be recruited for stress diagnostic applications.


Subject(s)
Apoptosis , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Cellular Senescence/physiology , Cell Proliferation , Apoptosis Regulatory Proteins/genetics , Cell Transformation, Neoplastic , Cyclin-Dependent Kinase Inhibitor p21/metabolism
4.
Cell Rep ; 42(3): 112205, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36857180

ABSTRACT

Aerobic glycolysis, a metabolic pathway essential for effector T cell survival and proliferation, regulates differentiation of autoimmune T helper (Th) 17 cells, but the mechanism underlying this regulation is largely unknown. Here, we identify a glycolytic intermediate metabolite, phosphoenolpyruvate (PEP), as a negative regulator of Th17 differentiation. PEP supplementation or inhibition of downstream glycolytic enzymes in differentiating Th17 cells increases intracellular PEP levels and inhibits interleukin (IL)-17A expression. PEP supplementation inhibits expression of signature molecules for Th17 and Th2 cells but does not significantly affect glycolysis, cell proliferation, or survival of T helper cells. Mechanistically, PEP binds to JunB and inhibits DNA binding of the JunB/basic leucine zipper transcription factor ATF-like (BATF)/interferon regulatory factor 4 (IRF4) complex, thereby modulating the Th17 transcriptional program. Furthermore, daily administration of PEP to mice inhibits generation of Th17 cells and ameliorates Th17-dependent autoimmune encephalomyelitis. These data demonstrate that PEP links aerobic glycolysis to the Th17 transcriptional program, suggesting the therapeutic potential of PEP for autoimmune diseases.


Subject(s)
Autoimmunity , Encephalomyelitis, Autoimmune, Experimental , Mice , Animals , Phosphoenolpyruvate/metabolism , Th17 Cells , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Differentiation/genetics , Mice, Inbred C57BL
6.
Free Radic Biol Med ; 193(Pt 1): 134-157, 2022 11 20.
Article in English | MEDLINE | ID: mdl-36206930

ABSTRACT

Increasing evidence suggests that abnormal cerebral glucose metabolism is largely present in Alzheimer's disease (AD). The brain utilizes glucose as its main energy source and a decline in its metabolism directly reflects on brain function. Weighing on recent evidence, here we systematically assessed the aberrant glucose metabolism associated with amyloid beta and phosphorylated tau accumulation in AD brain. Interlink between insulin signaling and AD highlighted the involvement of the IRS/PI3K/Akt/AMPK signaling, and GLUTs in the disease progression. While shedding light on the mitochondrial dysfunction in the defective glucose metabolism, we further assessed functional consequences of AGEs (advanced glycation end products) accumulation, polyol activation, and other contributing factors including terminal respiration, ROS (reactive oxygen species), mitochondrial permeability, PINK1/parkin defects, lysosome-mitochondrial crosstalk, and autophagy/mitophagy. Combined with the classic plaque and tangle pathologies, glucose hypometabolism with acquired insulin resistance and mitochondrial dysfunction potentiate these factors to exacerbate AD pathology. To this end, we further reviewed AD and DM (diabetes mellitus) crosstalk in disease progression. Taken together, the present work discusses the emerging role of altered glucose metabolism, contributing impact of insulin signaling, and mitochondrial dysfunction in the defective cerebral glucose utilization in AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Oxidative Stress/physiology , Mitochondria/metabolism , Glucose/metabolism , Insulin/metabolism , Disease Progression
8.
Curr Protein Pept Sci ; 23(3): 158-165, 2022.
Article in English | MEDLINE | ID: mdl-35331108

ABSTRACT

Cancer is fundamentally a disease of perturbed genes. Although many mutations can be marked in the genome of cancer or a transformed cell, the initiation and progression are driven by only a few mutational events, viz., driver mutations that progressively govern and execute the functional impacts. The driver mutations are thus believed to dictate and dysregulate the subsequent cellular proliferative function/decisions, thereby producing a cancerous state. Therefore, identifying the driver events from the genomic alterations in a patient's cancer cell gained enormous attention recently for designing better targeting therapies and paving the way for precision cancer medicine. With rolling advancements in high-throughput omic technologies, analysis of genetic variations and gene expression profiles for cancer patients has become a routine clinical practice. However, it is anticipated that protein structural alterations resulting from such driver mutations can provide more direct and clinically relevant evidence of disease states than genetic signatures alone. This review comprehensively discusses various aspects and approaches that have been developed for the prediction of cancer drivers using genetic signatures and protein structures and their potential application in developing precision cancer therapies.


Subject(s)
Neoplasms , Precision Medicine , Genomics/methods , Humans , Mutation , Neoplasms/genetics , Neoplasms/therapy , Precision Medicine/methods , Proteins/genetics
9.
J Biomol Struct Dyn ; 40(17): 7885-7898, 2022 10.
Article in English | MEDLINE | ID: mdl-33797339

ABSTRACT

SARS-CoV-2 outbreak in China in December 2019 and its spread as worldwide pandemic has been a major global health crisis. Extremely high infection and mortality rate has severely affected all sectors of life and derailed the global economy. While drug and vaccine development have been prioritized and have made significant progression, use of phytochemicals and herbal constituents is deemed as a low-cost, safer and readily available alternative. We investigated therapeutic efficacy of eight withanolides (derived from Ashwagandha) against the angiotensin-converting enzyme 2 (ACE2) proteins, a target cell surface receptor for SARS-CoV-2 and report results on the (i) computational analyses including binding affinity and stable interactions with ACE2, occupancy of ACE2 residues in making polar and nonpolar interactions with different withanolides/ligands and (2) in vitro mRNA and protein analyses using human cancer (A549, MCF7 and HSC3) cells. We found that among all withanolides, Withaferin-A, Withanone, Withanoside-IV and Withanoside-V significantly inhibited the ACE2 expression. Analysis of withanolides-rich aqueous extracts derived from Ashwagandha leaves and stem showed a higher ACE2 inhibitory potency of stem-derived extracts. Taken together, we demonstrated the inhibitory potency of Ashwagandha withanolides and its aqueous extracts against ACE2.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 Drug Treatment , Withania , Withanolides , Angiotensin-Converting Enzyme 2 , Humans , Ligands , RNA, Messenger/metabolism , Receptors, Cell Surface/metabolism , SARS-CoV-2 , Withania/chemistry , Withania/metabolism , Withanolides/chemistry , Withanolides/metabolism , Withanolides/pharmacology
12.
Cells ; 10(12)2021 11 24.
Article in English | MEDLINE | ID: mdl-34943795

ABSTRACT

Hyperactivation of immune responses resulting in excessive release of pro-inflammatory mediators in alveoli/lung structures is the principal pathological feature of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The cytokine hyperactivation in COVID-19 appears to be similar to those seen in rheumatoid arthritis (RA), an autoimmune disease. Emerging evidence conferred the severity and risk of COVID-19 to RA patients. Amid the evidence of musculoskeletal manifestations involving immune-inflammation-dependent mechanisms and cases of arthralgia and/or myalgia in COVID-19, crosstalk between COVID-19 and RA is often debated. The present article sheds light on the pathological crosstalk between COVID-19 and RA, the risk of RA patients in acquiring SARS-CoV-2 infection, and the aspects of SARS-CoV-2 infection in RA development. We also conferred whether RA can exacerbate COVID-19 outcomes based on available clinical readouts. The mechanistic overlapping in immune-inflammatory features in both COVID-19 and RA was discussed. We showed the emerging links of angiotensin-converting enzyme (ACE)-dependent and macrophage-mediated pathways in both diseases. Moreover, a detailed review of immediate challenges and key recommendations for anti-rheumatic drugs in the COVID-19 setting was presented for better clinical monitoring and management of RA patients. Taken together, the present article summarizes available knowledge on the emerging COVID-19 and RA crosstalk and their mechanistic overlaps, challenges, and therapeutic options.


Subject(s)
Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/therapy , COVID-19/complications , COVID-19/therapy , Animals , COVID-19/virology , Humans , Inflammation/pathology , Macrophages/metabolism , Models, Biological , SARS-CoV-2/physiology
13.
Cells ; 10(10)2021 09 27.
Article in English | MEDLINE | ID: mdl-34685537

ABSTRACT

Cell transdifferentiation and reprogramming approaches in recent times have enabled the manipulation of cell fate by enrolling exogenous/artificial controls. The chemical/small molecule and regulatory components of transcription machinery serve as potential tools to execute cell transdifferentiation and have thereby uncovered new avenues for disease modeling and drug discovery. At the advanced stage, one can believe these methods can pave the way to develop efficient and sensitive gene therapy and regenerative medicine approaches. As we are beginning to learn about the utility of cell transdifferentiation and reprogramming, speculations about its applications in translational therapeutics are being largely anticipated. Although clinicians and researchers are endeavoring to scale these processes, we lack a comprehensive understanding of their mechanism(s), and the promises these offer for targeted and personalized therapeutics are scarce. In the present report, we endeavored to provide a detailed review of the original concept, methods and modalities enrolled in the field of cellular transdifferentiation and reprogramming. A special focus is given to the neuronal and cardiac systems/diseases towards scaling their utility in disease modeling and drug discovery.


Subject(s)
Cellular Reprogramming/genetics , Heart Diseases/genetics , Animals , Cell Transdifferentiation , Disease Models, Animal , Humans , Mice
14.
Front Aging Neurosci ; 13: 662786, 2021.
Article in English | MEDLINE | ID: mdl-34149397

ABSTRACT

The spectrum of health complications instigated by coronavirus disease 2019 (COVID-19, caused by the novel severe acute respiratory syndrome coronavirus 2 or SARS-CoV-2) pandemic has been diverse and complex. Besides the evident pulmonary and cardiovascular threats, accumulating clinical data points to several neurological complications, which are more common in elderly COVID-19 patients. Recent pieces of evidence have marked events of neuro infection and neuroinvasion, producing several neurological complications in COVID-19 patients; however, a systematic understanding of neuro-pathophysiology and manifested neurological complications, more specifically in elderly COVID-19 patients is largely elusive. Since the elderly population gradually develops neurological disorders with aging, COVID-19 inevitably poses a higher risk of neurological manifestations to the aged patients. In this report, we reviewed SARS-CoV-2 infection and its role in neurological manifestations with an emphasis on the elderly population. We reviewed neuropathological events including neuroinfection, neuroinvasion, and their underlying mechanisms affecting neuromuscular, central- and peripheral- nervous systems. We further assessed the imminent neurological challenges in the COVID-19 exposed population, post-SARS-CoV-2-infection. Given the present state of clinical preparedness, the emerging role of AI and machine learning was also discussed concerning COVID-19 diagnostics and its management. Taken together, the present review summarizes neurological outcomes of SARS-CoV-2 infection and associated complications, specifically in elderly patients, and underlines the need for their clinical management in advance.

15.
Cells ; 10(6)2021 05 28.
Article in English | MEDLINE | ID: mdl-34071497

ABSTRACT

Diabetes mellitus (DM) is one of the principal manifestations of metabolic syndrome and its prevalence with modern lifestyle is increasing incessantly. Chronic hyperglycemia can induce several vascular complications that were referred to be the major cause of morbidity and mortality in DM. Although several therapeutic targets have been identified and accessed clinically, the imminent risk of DM and its prevalence are still ascending. Substantial pieces of evidence revealed that histone deacetylase (HDAC) isoforms can regulate various molecular activities in DM via epigenetic and post-translational regulation of several transcription factors. To date, 18 HDAC isoforms have been identified in mammals that were categorized into four different classes. Classes I, II, and IV are regarded as classical HDACs, which operate through a Zn-based mechanism. In contrast, class III HDACs or Sirtuins depend on nicotinamide adenine dinucleotide (NAD+) for their molecular activity. Functionally, most of the HDAC isoforms can regulate ß cell fate, insulin release, insulin expression and signaling, and glucose metabolism. Moreover, the roles of HDAC members have been implicated in the regulation of oxidative stress, inflammation, apoptosis, fibrosis, and other pathological events, which substantially contribute to diabetes-related vascular dysfunctions. Therefore, HDACs could serve as the potential therapeutic target in DM towards developing novel intervention strategies. This review sheds light on the emerging role of HDACs/isoforms in diabetic pathophysiology and emphasized the scope of their targeting in DM for constituting novel interventional strategies for metabolic disorders/complications.


Subject(s)
Diabetes Mellitus , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Animals , Cells, Cultured , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Humans , Inflammation/drug therapy , Protein Isoforms/metabolism
16.
Mol Neurobiol ; 58(9): 4694-4715, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34169443

ABSTRACT

The unremitting coronavirus disease 2019 (COVID-19) pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) marked a year-long phase of public health adversaries and has severely compromised healthcare globally. Early evidence of COVID-19 noted its impact on the pulmonary and cardiovascular functions, while multiple studies in recent time shed light on its substantial neurological complications, though a comprehensive understanding of the cause(s), the mechanism(s), and their neuropathological outcomes is scarce. In the present review, we conferred evidence of neurological complications in COVID-19 patients and shed light on the SARS-CoV-2 infection routes including the hematogenous, direct/neuronal, lymphatic tissue or cerebrospinal fluid, or infiltration through infected immune cells, while the underlying mechanism of SARS-CoV-2 invasion to the central nervous system (CNS) was also discussed. In an up-to-date manner, we further reviewed the impact of COVID-19 in developing diverse neurologic manifestations associated with CNS, peripheral nervous system (PNS), skeletal muscle, and also pre-existing neurological diseases, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy, and myasthenia gravis. Furthermore, we discussed the involvement of key factors including age, sex, comorbidity, and disease severity in exacerbating the neurologic manifestations in COVID-19 patients. An outlook of present therapeutic strategies and state of existing challenges in COVID-19 management was also accessed. Conclusively, the present report provides a comprehensive review of COVID-19-related neurological complications and emphasizes the need for their early clinical management in the ongoing COVID-19 pandemic.


Subject(s)
COVID-19/complications , Nervous System Diseases/etiology , Pandemics , SARS-CoV-2/pathogenicity , Adult , Age Factors , Aged , Aged, 80 and over , Autoimmune Diseases of the Nervous System/epidemiology , Autoimmune Diseases of the Nervous System/etiology , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , Central Nervous System/virology , Child , Comorbidity , Female , Humans , Immune System/virology , Inflammation , Male , Middle Aged , Models, Biological , Muscular Diseases/etiology , Nervous System Diseases/drug therapy , Nervous System Diseases/epidemiology , Nervous System Diseases/physiopathology , Neurodegenerative Diseases/complications , Neurons/virology , Organ Specificity , Sex Factors , Viremia/chemically induced , Viremia/immunology , Virus Internalization
17.
Int J Biol Macromol ; 184: 297-312, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34118289

ABSTRACT

COVID-19 caused by SARS-CoV-2 corona virus has become a global pandemic. In the absence of drugs and vaccine, and premises of time, efforts and cost required for their development, natural resources such as herbs are anticipated to provide some help and may also offer a promising resource for drug development. Here, we have investigated the therapeutic prospective of Ashwagandha for the COVID-19 pandemic. Nine withanolides were tested in silico for their potential to target and inhibit (i) cell surface receptor protein (TMPRSS2) that is required for entry of virus to host cells and (ii) viral protein (the main protease Mpro) that is essential for virus replication. We report that the withanolides possess capacity to inhibit the activity of TMPRSS2 and Mpro. Furthermore, withanolide-treated cells showed downregulation of TMPRSS2 expression and inhibition of SARS-CoV-2 replication in vitro, suggesting that Ashwagandha may provide a useful resource for COVID-19 treatment.


Subject(s)
Antiviral Agents/pharmacology , Plant Extracts/chemistry , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Viral Matrix Proteins/metabolism , Withanolides/pharmacology , A549 Cells , Antiviral Agents/chemistry , Cell Line , Cell Survival/drug effects , Computer Simulation , Down-Regulation , Gene Expression Regulation/drug effects , Humans , MCF-7 Cells , Models, Molecular , Molecular Dynamics Simulation , Protein Conformation , SARS-CoV-2/drug effects , Serine Endopeptidases/chemistry , Viral Matrix Proteins/chemistry , Virus Internalization/drug effects , Withanolides/chemistry
18.
Ageing Res Rev ; 68: 101338, 2021 07.
Article in English | MEDLINE | ID: mdl-33838320

ABSTRACT

Association of diabetes with an elevated risk of cardiac failure has been clinically evident. Diabetes potentiates diastolic and systolic cardiac failure following the myocardial infarction that produces the cardiac muscle-specific microvascular complication, clinically termed as diabetic cardiomyopathy. Elevated susceptibility of diabetic cardiomyopathy is primarily caused by the generation of free radicals in the hyperglycemic milieu, compromising the myocardial contractility and normal cardiac functions with increasing redox insult, impaired mitochondria, damaged organelles, apoptosis, and cardiomyocytes fibrosis. Autophagy is essentially involved in the recycling/clearing the damaged organelles, cytoplasmic contents, and aggregates, which are frequently produced in cardiomyocytes. Although autophagy plays a vital role in maintaining the cellular homeostasis in diligent cardiac tissues, this process is frequently impaired in the diabetic heart. Given its clinical significance, accumulating evidence largely showed the functional aspects of autophagy in diabetic cardiomyopathy, elucidating its intricate protective and pathogenic outcomes. However, etiology and molecular readouts of these contrary autophagy activities in diabetic cardiomyopathy are not yet comprehensively assessed and translated. In this review, we attempted to assess the role of autophagy and its adaptations in the diabetic heart. To delineate the molecular consequences of these events, we provided detailed insights into the autophagy regulation pieces of machinery including the mTOR/AMPK, TFEB/ZNSCAN3, FOXOs, SIRTs, PINK1/Parkin, Nrf2, miRNAs, and others in the diabetic cardiomyopathy. Given the clinical significance of autophagy in the diabetic heart, we further discussed the potential pharmacotherapeutic strategies towards targeting autophagy. Taken together, the present report meticulously assessed autophagy, its adaptations, and molecular regulations in diabetic cardiomyopathy and reviewed the current autophagy-targeting strategies.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , MicroRNAs , Autophagy , Diabetic Cardiomyopathies/drug therapy , Humans , Myocardium , Myocytes, Cardiac
19.
Antibodies (Basel) ; 10(1)2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33440681

ABSTRACT

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a novel coronavirus for which no known effective antiviral drugs are available. In the present study, to accelerate the discovery of potential drug candidates, bioinformatics-based in silico drug discovery approaches are utilized. We performed multiple sequence alignments of the Spike (S) protein with 75 sequences of different viruses from the Orthocoronavirinae subfamily. This provided us with insights into the evolutionarily conserved domains that can be targeted using drugs or specific antibodies. Further, we analyzed the mechanism of SARS-CoV-2 core proteins, i.e., S and RdRp (RNA-dependent RNA polymerase), to elucidate how the virus infection can utilize hemoglobin to decrease the blood oxygen level. Moreover, after a comprehensive literature survey, more than 60 antiviral drugs were chosen. The candidate drugs were then ranked based on their potential to interact with the Spike and RdRp proteins of SARS-CoV-2. The present multidimensional study further advances our understanding of the novel viral molecular targets and potential of computational approaches for therapeutic assessments. The present study can be a steppingstone in the selection of potential drug candidates to be used either as a treatment or as a reference point when designing a new drug/antibody/inhibitory peptide/vaccine against SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL
...