Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Orthop Res ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38923036

ABSTRACT

The multidirectional biomechanics of the thumb carpometacarpal (CMC) joint underlie the remarkable power and precision of the thumb. Because of the unconfined nature of thumb CMC articulation, these biomechanics are largely dictated by ligaments, notably the anterior oblique ligament (AOL) and the dorsoradial ligament (DRL). However, the rotational and translational stabilizing roles of these ligaments remain unclear, as evidenced by the variety of interventions employed to treat altered pathological CMC biomechanics. The purpose of this study was to determine the effects of sectioning the AOL (n = 8) or DRL (n = 8) on thumb CMC joint biomechanics (rotational range-of-motion [ROM] and stiffness, translational ROM) in 26 rotational directions, including internal and external rotation, and in eight translational directions. Using a robotic musculoskeletal simulation system, the first metacarpal of each specimen (n = 16) was rotated and translated with respect to the trapezium to determine biomechanics before and after ligament sectioning. We observed the greatest increase in rotational ROM and decrease in rotational stiffness in flexion directions and internal rotation following DRL transection and in extension directions following AOL transection. The greatest increase in translational ROM was in dorsal and radial directions following DRL transection and in volar directions following AOL transection. These data suggest the AOL and DRL play complementary stabilizing roles, primarily restraining translations in the direction of and rotations away from the ligament insertion sites. These findings may inform future interventions or implant designs for pathological CMC joints.

2.
J Biomech ; 168: 112129, 2024 May.
Article in English | MEDLINE | ID: mdl-38703515

ABSTRACT

The thumb carpometacarpal (CMC) joint facilitates multidirectional motion of the thumb and affords prehensile power and precision. Traditional methods of quantifying thumb CMC kinematics have been largely limited to range-of-motion (ROM) measurements in 4 orthogonal primary directions (flexion, extension, abduction, adduction) due to difficulties in capturing multidirectional thumb motion. However, important functional motions (e.g., opposition) consist of combinations of these primary directions, as well as coupled rotations (internal and external rotation) and translations. Our goal was to present a method of quantifying the multidirectional in vitro biomechanics of the thumb CMC joint in 6 degrees-of-freedom. A robotic musculoskeletal simulation system was used to manipulate CMC joints of 10 healthy specimens according to specimen-specific joint coordinate systems calculated from computed tomography bone models. To determine ROM and stiffness (K), the first metacarpal (MC1) was rotated with respect to the trapezium (TPM) to a terminal torque of 1 Nm in the four primary directions and in 20 combinations of these primary directions. ROM and K were also determined in internal and external rotation. We found multidirectional ROM was greatest and K least in directions oblique to the primary directions. We also found external rotation coupling with adduction-flexion and abduction-extension and internal rotation coupling with abduction-flexion and adduction-extension. Additionally, the translation of the proximal MC1 was predominantly radial during adduction and predominantly ulnar during abduction. The findings of this study aid in understanding thumb CMC joint mechanics and contextualize pathological changes for future treatment improvement.


Subject(s)
Carpometacarpal Joints , Range of Motion, Articular , Thumb , Humans , Carpometacarpal Joints/physiology , Thumb/physiology , Range of Motion, Articular/physiology , Biomechanical Phenomena , Male , Female , Rotation , Models, Biological , Aged , Middle Aged
3.
J Biomech ; 165: 112013, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38401330

ABSTRACT

Understanding the loads that occur across musculoskeletal joints is critical to advancing our understanding of joint function and pathology, implant design and testing, as well as model verification. Substantial work in these areas has occurred in the hip and knee but has not yet been undertaken in smaller joints, such as those in the wrist. The thumb carpometacarpal (CMC) joint is a uniquely human articulation that is also a common site of osteoarthritis with unknown etiology. We present two potential designs for an instrumented trapezium implant and compare approaches to load calibration. Two instrumented trapezia designs were prototyped using strain gauge technology: Tube and Diaphragm. The Tube design is a well-established structure for sensing loads while the Diaphragm is novel. Each design was affixed to a 6-DOF load cell that was used as the reference. Loads were applied manually, and two calibration methods, supervised neural network (DEEP) and matrix algebra (MAT), were implemented. Bland-Altman 95% confidence interval for the limits of agreement (95% CI LOA) was used to assess accuracy. Overall, the DEEP calibration decreased 95% CI LOA compared with the MAT approach for both designs. The Diaphragm design outperformed the Tube design in measuring the primary load vector (joint compression). Importantly, the Diaphragm design permits the hermetic encapsulation of all electronics, which is not possible with the Tube design, given the small size of the trapezium. Substantial work remains before this device can be approved for implantation, but this work lays the foundation for further device development that will be required.


Subject(s)
Carpometacarpal Joints , Osteoarthritis , Trapezium Bone , Humans , Thumb , Carpometacarpal Joints/pathology , Trapezium Bone/pathology , Wrist Joint
SELECTION OF CITATIONS
SEARCH DETAIL
...