Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 861: 160576, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36462656

ABSTRACT

With ongoing global urbanization processes and consumption patterns increasingly recognized as key determinants of environmental change, a better understanding of the links between urban consumption and biodiversity loss is paramount. Here we quantify the global biodiversity footprint (BDF) of Vienna's (Austria) biomass consumption. We present a state-of-the-art product specific approach to (a) locate the production areas required for Vienna's consumption and map Vienna's BDF by (b) linking them with data taken from a previously published countryside Species-Area-Relationship (cSAR) model with a representation of land-use intensity. We found that food has the largest share in Vienna's BDF (58 %), followed by biomass for material applications (28 %) and bioenergy (13 %). The total BDF occurs predominantly within Austria and in its neighbouring countries, with ~20 % located outside Europe. Although the per capita biomass consumption in Vienna is above the global average, global and Viennese per capita BDFs are roughly equal, indicating that Vienna sources its products from high-yield regions with efficient production systems and comparatively low native species richness. We conclude that, among others, dietary changes offer a key leverage point for reducing the urban BDF, while expanding the use of biomass for material and energy use may increase the BDF and requires appropriate monitoring.


Subject(s)
Biodiversity , Urbanization , Cities , Biomass , Austria
2.
Sci Total Environ ; 847: 157612, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35901890

ABSTRACT

Agroecology has been proposed as a strategy to improve food system sustainability, but has also been criticised for using land inefficiently. We compared five explorative storylines, developed in a stakeholder process, for future food systems in the EU to 2050. We modelled a range of biophysical (e.g., land use and food production), environmental (e.g., greenhouse gas emissions) and social indicators, and potential for regional food self-sufficiency, and investigated the economic policy needed to reach these futures by 2050. Two contrasting storylines for upscaling agroecological practices emerged. In one, agroecology was implemented to produce high-value products serving high-income consumers through trade but, despite 40% of agricultural area being under organic management, only two out of eight EU environmental policy targets were met. As diets followed current trends in this storyline, there were few improvements in environmental indicators compared with the current situation, despite large-scale implementation of agroecological farming practices. This suggests that large-scale implementation of agroecological practices without concurrent changes on the demand side could aggravate existing environmental pressures. However, our second agroecological storyline showed that if large-scale diffusion of agroecological farming practices were implemented alongside drastic dietary change and waste reductions, major improvements on environmental indicators could be achieved and all relevant EU policy targets met. An alternative storyline comprising sustainable intensification in combination with dietary change and waste reductions was efficient in meeting targets related to climate, biodiversity, ammonia emissions, and use of antibiotics, but did not meet targets for reductions in pesticide and fertiliser use. These results confirm the importance of dietary change for food system climate change mitigation. Economic modelling showed a need for drastic changes in consumer preferences towards more plant-based, agroecological and local foods, and for improvements in technology, for these storylines to be realised, as very high taxes and tariffs would otherwise be needed.


Subject(s)
Greenhouse Gases , Pesticides , Agriculture/methods , Ammonia , Anti-Bacterial Agents , Diet, Healthy , Fertilizers , Nutrition Policy
3.
Carbon Balance Manag ; 16(1): 37, 2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34897551

ABSTRACT

BACKGROUND: The stock dynamics of harvested wood products (HWPs) are a relevant component of anthropogenic carbon cycles. Generally, HWP stock increases are treated as carbon removals from the atmosphere, while stock decreases are considered emissions. Among the different approaches suggested by the Intergovernmental Panel on Climate Change (IPCC) for accounting HWPs in national greenhouse gas inventories, the production approach has been established as the common approach under the Kyoto Protocol and Paris Agreement. However, the 24th session of the Conference of the Parties to the United Nations Framework Convention on Climate Change decided that alternative approaches can also be used. The IPCC has published guidelines for estimating HWP carbon stocks and default parameters for the various approaches in the 2006 Guidelines, 2013 Guidance, and 2019 Refinement. Although there are significant differences among the default methods in the three IPCC guidelines, no studies have systematically quantified or compared the results from the different guidelines on a global scale. This study quantifies the HWP stock dynamics and corresponding carbon removals/emissions under each approach based on the default methods presented in each guideline for 235 individual countries/regions. RESULTS: We identified relatively good consistency in carbon stocks/removals between the stock-change and the atmospheric flow approaches at a global level. Under both approaches, the methodological and parameter updates in the 2019 Refinement (e.g., considered HWPs, starting year for carbon stocks, and conversion factors) resulted in one-third reduction in carbon removals compared to the 2006 Guidelines. The production approach leads to a systematic underestimation of global carbon stocks and removals because it confines accounting to products derived from domestic harvests and uses the share of domestic feedstock for accounting. The 2013 Guidance and the 2019 Refinement reduce the estimated global carbon removals under the production approach by 15% and 45% (2018), respectively, compared to the 2006 Guidelines. CONCLUSIONS: Gradual refinements in the IPCC default methods have a considerably higher impact on global estimates of HWP carbon stocks and removals than the differences in accounting approaches. The methodological improvements in the 2019 Refinement halve the global HWP carbon removals estimated in the former version, the 2006 Guidelines.

4.
Ecosyst Serv ; 51: 101344, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34631401

ABSTRACT

Human intervention on land enhances the supply of provisioning ecosystem services, but also exerts pressures on ecosystem functioning. We utilize the Human Appropriation of Net Primary Production (HANPP) framework to assess these relations in European agriculture, for 220 NUTS2 regions. We put a particular focus on individual land system components, i.e. croplands, grasslands, and livestock husbandry and relate associated biomass flows to the potential net primary productivity NPP. For the reference year 2012, we find that 469 g dm/m2/yr (38% of NPPpot) of used biomass were harvested on total agricultural land, and that one tonne of annually harvested biomass is associated with 1.67 tonnes dry matter (dm) of HANPP, ranging from 0.8 to 8.1 tonnes dry matter (dm) across all regions. EU livestock systems are a large consumer of these provisioning ecosystem services, and invoking higher HANPP flows than current HANPP on cropland and grassland within the EU, even exceeding the potential NPP in one fifth of all NUTS2 regions. NPP remaining in ecosystems after provisioning society with biomass is essential for the functioning of ecosystems and is 563 g dm/m2/yr or 46% of NPPpot on all agricultural land. We conclude from our analysis that the HANPP framework provides useful indicators that should be integrated in future ecosystem service assessments.

5.
Data Brief ; 38: 107351, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34553008

ABSTRACT

Electricity infrastructures are crucial for economic prosperity and underpin fundamental energy services. This article provides global datasets on installed power plant capacities, transmission and distribution grid lengths as well as transformer capacities. A country-level dataset on installed electricity generation capacities during 1980 to 2017, comprising 14 types of power plants and technologies, is obtained by combining data from three different online databases. Transmission grid lengths are derived from georeferenced data available from OpenStreetMap, augmented with data from national and international statistics. Data gaps are filled and historical developments estimated by applying a linear regression model. Statistical data on distribution grids lengths are collected for 31 countries that make up almost 50% of the global electricity consumption. Estimates for distribution grid lengths in the remaining countries are again obtained through linear regression. Data on installed transformer capacities are sparsely available from market intelligence reports and specialist journals. For most countries, they are estimated from typical transformer-to-generator ratios, i.e. based on power plant capacities. Global generation capacity expansion since 1980 was dominated by coal-fired (mainly China and India) and gas-fired plants (mainly industrialized countries and Middle East). Solar and wind power accounted for the second and third largest capacity additions since 2010 (after coal-fired plants). The total length of transmission circuits worldwide is estimated at 4.7 million kilometres, and the length of distribution grids between 88 and 104 million km. China accounts for 41% of the expansion of global transmission grids, and 32% of the expansion of distribution grids since 1980. In 2017, China's electricity grids were approximately as large as the grids of all western industrialized countries combined. The globally installed capacity of transformers is estimated between 36 and 45 Teravolt-Ampere, with transmission and distribution transformers accounting for above 40% each, and generator step-up transformers for the rest. The data provided in this article are used for estimating global material stocks in electricity infrastructures in the related research paper [1] and can be used in energy system models, for econometric analyses or development indices on country level and many more purposes.

6.
Sci Total Environ ; 735: 139353, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32474248

ABSTRACT

Global food systems contribute to climate change, the transgression of planetary boundaries and deforestation. An improved understanding of the environmental impacts of different food system futures is crucial for forging strategies to sustainably nourish a growing world population. We here quantify the greenhouse gas (GHG) emissions of global food system scenarios within a biophysically feasible "option space" in 2050 comprising all scenarios in which biomass supply - calculated as function of agricultural area and yields - is sufficient to cover biomass demand - derived from human diets and the feed demand of livestock. We assessed the biophysical feasibility of 520 scenarios in a hypothetical no-deforestation world. For all feasible scenarios, we calculate (in) direct GHG emissions related to agriculture. We also include (possibly negative) GHG emissions from land-use change, including changes in soil organic carbon (SOC) and carbon sinks from vegetation regrowth on land spared from food production. We identify 313 of 520 scenarios as feasible. Agricultural GHG emissions (excluding land use change) of feasible scenarios range from 1.7 to 12.5 Gt CO2e yr-1. When including changes in SOC and vegetation regrowth on spare land, the range is between -10.7 and 12.5 Gt CO2e yr-1. Our results show that diets are the main determinant of GHG emissions, with highest GHG emissions found for scenarios including high meat demand, especially if focused on ruminant meat and milk, and lowest emissions for scenarios with vegan diets. Contrary to frequent claims, our results indicate that diets and the composition and quantity of livestock feed, not crop yields, are the strongest determinants of GHG emissions from food-systems when existing forests are to be protected.

7.
Glob Change Biol Bioenergy ; 11(11): 1283-1297, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31762785

ABSTRACT

Short rotation plantations are often considered as holding vast potentials for future global bioenergy supply. In contrast to raising biomass harvests in forests, purpose-grown biomass does not interfere with forest carbon (C) stocks. Provided that agricultural land can be diverted from food and feed production without impairing food security, energy plantations on current agricultural land appear as a beneficial option in terms of renewable, climate-friendly energy supply. However, instead of supporting energy plantations, land could also be devoted to natural succession. It then acts as a long-term C sink which also results in C benefits. We here compare the sink strength of natural succession on arable land with the C saving effects of bioenergy from plantations. Using geographically explicit data on global cropland distribution among climate and ecological zones, regionally specific C accumulation rates are calculated with IPCC default methods and values. C savings from bioenergy are given for a range of displacement factors (DFs), acknowledging the varying efficiency of bioenergy routes and technologies in fossil fuel displacement. A uniform spatial pattern is assumed for succession and bioenergy plantations, and the considered timeframes range from 20 to 100 years. For many parameter settings-in particular, longer timeframes and high DFs-bioenergy yields higher cumulative C savings than natural succession. Still, if woody biomass displaces liquid transport fuels or natural gas-based electricity generation, natural succession is competitive or even superior for timeframes of 20-50 years. This finding has strong implications with climate and environmental policies: Freeing land for natural succession is a worthwhile low-cost natural climate solution that has many co-benefits for biodiversity and other ecosystem services. A considerable risk, however, is C stock losses (i.e., emissions) due to disturbances or land conversion at a later time.

8.
Carbon Manag ; 9(3): 265-275, 2018.
Article in English | MEDLINE | ID: mdl-30881485

ABSTRACT

Wooden construction elements often exhibit lower life cycle greenhouse gas (GHG) emissions than conventional counterparts ('material substitution effect'). Moreover, the building stock represents a carbon (C) sink if timber inflows (construction) surpass outflows (demolition) ('C-stock effect'). A dynamic stock model incorporating these effects is applied to quantify potential climate benefits of wood construction in Austria's residential building sector. If present trends are maintained, culminating in a wood construction share (WCS) of 50% during 2050-2100, building shells could contain three times as much C in 2100 as today. Annual timber demand for residential construction could double, but would remain well below Austria's current net exports. Compared to a baseline scenario with constant WCS (22%), cumulated GHG savings from material substitution until 2050 are estimated 2 to 4.2 Tg CO2-equivalent - clearly less than savings from C-stock expansion (9.2 Tg). Savings from both effects would double in a highly ambitious scenario (WCS=80% during 2050-2100). The applied 'Stock Change Approach' is consistent with IPCC Guidelines, but the above-mentioned savings from C-stock changes would not materialize under the current default GHG inventory accounting approach. Moreover, savings from C-stock effects must eventually be weighed against forest C-stock changes, as growing domestic demand might stimulate wood harvesting.

SELECTION OF CITATIONS
SEARCH DETAIL
...