Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Micron ; 169: 103444, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36965270

ABSTRACT

High-resolution transmission electron microscopy (TEM) of organic crystals, such as Lead Phthalocyanine (PbPc), is very challenging since these materials are prone to electron beam damage leading to the breakdown of the crystal structure during investigation. Quantification of the damage is imperative to enable high-resolution imaging of PbPc crystals with minimum structural changes. In this work, we performed a detailed electron diffraction study to quantitatively measure degradation of PbPc crystals upon electron beam irradiation. Our study is based on the quantification of the fading intensity of the spots in the electron diffraction patterns. At various incident dose rates (e/Å2/s) and acceleration voltages, we experimentally extracted the decay rate (1/s), which directly correlates with the rate of beam damage. In this manner, a value for the critical dose (e/Å2) could be determined, which can be used as a measure to quantify beam damage. Using the same methodology, we explored the influence of cryogenic temperatures, graphene TEM substrates, and graphene encapsulation in prolonging the lifetime of the PbPc crystal structure during TEM investigation. The knowledge obtained by diffraction experiments is then translated to real space high-resolution TEM imaging of PbPc.

2.
J Phys Chem B ; 125(48): 13339-13347, 2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34808063

ABSTRACT

(R, S)-2-Chloromandelic acid, which can crystallize in racemic crystals (forms α and ß) or a conglomerate (form γ), has been studied for its glass-forming behavior. Below the glass transition temperature, samples of the title compound crack into pieces. Correlation plots of DSC results have been used to investigate what determines the cracking and its occurrence temperature. We found that the latter is influenced by the polymorph from which the melt state has been obtained, showing that a certain memory of the previous crystalline phase persists in the undercooled melt. Moreover, this residual structure could be eliminated by elongating the annealing period or increasing the annealing temperature. Investigation using broadband dielectric spectroscopy confirmed such a memory effect. Finally, we studied the role of cracking in the control of the crystallization. In contrast with previous literature on other glass-forming molecular systems, we verified that the crystallization upon reheating is not impacted by the occurrence of cracks in the glassy state. This observation challenges the current views on polymorphic crystallization from organic glasses.

3.
J Appl Crystallogr ; 54(Pt 4): 1256-1267, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34429726

ABSTRACT

Grazing-incidence X-ray diffraction (GIXD) is a widely used technique for the crystallographic characterization of thin films. The identification of a specific phase or the discovery of an unknown polymorph always requires indexing of the associated diffraction pattern. However, despite the importance of this procedure, only a few approaches have been developed so far. Recently, an advanced mathematical framework for indexing of these specific diffraction patterns has been developed. Here, the successful implementation of this framework in the form of an automated indexing software, named GIDInd, is introduced. GIDInd is based on the assumption of a triclinic unit cell with six lattice constants and a distinct contact plane parallel to the substrate surface. Two approaches are chosen: (i) using only diffraction peaks of the GIXD pattern and (ii) combining the GIXD pattern with a specular diffraction peak. In the first approach the six unknown lattice parameters have to be determined by a single fitting procedure, while in the second approach two successive fitting procedures are used with three unknown parameters each. The output unit cells are reduced cells according to approved crystallographic conventions. Unit-cell solutions are additionally numerically optimized. The computational toolkit is compiled in the form of a MATLAB executable and presented within a user-friendly graphical user interface. The program is demonstrated by application on two independent examples of thin organic films.

4.
Chem Mater ; 33(4): 1455-1461, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33642680

ABSTRACT

The molecule 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10) is an organic semiconductor with outstanding performance in thin-film transistors. The asymmetric shape of the molecule causes an unusual phase behavior, which is a result of a distinct difference in the molecular arrangement between the head-to-head stacking of the molecules versus head-to-tail stacking. Thin films are prepared at elevated temperatures by crystallization from melt under controlled cooling rates, thermal-gradient crystallization, and bar coating at elevated temperatures. The films are investigated using X-ray diffraction techniques. Unusual peak-broadening effects are found, which cannot be explained using standard models. The modeling of the diffraction patterns with a statistic variation of the molecules reveal that a specific type of molecular disorder is responsible for the observed peak-broadening phenomena: the known head-to-head stacking within the crystalline phase is disturbed by the statistic integration of reversed (or flipped) molecules. It is found that 7-15% of the molecules are integrated in a reversed way, and these fractions are correlated with cooling rates during the sample preparation procedure. Temperature-dependent in situ experiments reveal that the defects can be healed by approaching the transition from the crystalline state to the smectic E state at a temperature of 145 °C. This work identifies and quantifies a specific crystalline defect type within thin films of an asymmetric rodlike conjugated molecule, which is caused by the crystallization kinetics.

SELECTION OF CITATIONS
SEARCH DETAIL
...