Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36904487

ABSTRACT

The performance of plastic components in water-bearing parts of industrial and household appliances, often in the presence of harsh environments and elevated temperatures, critically relies on the mechanical and thermal polymer stability. In this light, the precise knowledge of aging properties of polymers formulated with dedicated antiaging additive packages as well as various fillers is crucial for long-time device warranty. We investigated and analysed the time-dependent, polymer-liquid interface aging of different industrial performance polypropylene samples in aqueous detergent solution at high temperatures (95 °C). Special emphasis was put on the disadvantageous process of consecutive biofilm formation that often follows surface transformation and degradation. Atomic force microscopy, scanning electron microscopy, and infrared spectroscopy were used to monitor and analyse the surface aging process. Additionally, bacterial adhesion and biofilm formation was characterised by colony forming unit assays. One of the key findings is the observation of crystalline, fibre-like growth of ethylene bis stearamide (EBS) on the surface during the aging process. EBS is a widely used process aid and lubricant enabling the proper demoulding of injection moulding plastic parts. The aging-induced surface-covering EBS layers changed the surface morphology and promoted bacterial adhesion as well as biofilm formation of Pseudomonas aeruginosa.

2.
Biomedicines ; 8(5)2020 May 01.
Article in English | MEDLINE | ID: mdl-32369920

ABSTRACT

Terpenoids are natural plant-derived products that are applied to treat a broad range of human diseases, such as airway infections and inflammation. However, pharmaceutical applications of terpenoids against bacterial infection remain challenging due to their poor water solubility. Here, we produce invasomes encapsulating thymol, menthol, camphor and 1,8-cineol, characterize them via cryo transmission electron microscopy and assess their bactericidal properties. While control- and cineol-invasomes are similarly distributed between unilamellar and bilamellar vesicles, a shift towards unilamellar invasomes is observable after encapsulation of thymol, menthol or camphor. Thymol- and camphor-invasomes show a size reduction, whereas menthol-invasomes are enlarged and cineol-invasomes remain unchanged compared to control. While thymol-invasomes lead to the strongest growth inhibition of S. aureus, camphor- or cineol-invasomes mediate cell death and S. aureus growth is not affected by menthol-invasomes. Flow cytometric analysis validate that invasomes comprising thymol are highly bactericidal to S. aureus. Notably, treatment with thymol-invasomes does not affect survival of Gram-negative E. coli. In summary, we successfully produce terpenoid-invasomes and demonstrate that particularly thymol-invasomes show a strong selective activity against Gram-positive bacteria. Our findings provide a promising approach to increase the bioavailability of terpenoid-based drugs and may be directly applicable for treating severe bacterial infections such as methicillin-resistant S. aureus.

SELECTION OF CITATIONS
SEARCH DETAIL
...