Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(7): 11266-11274, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35473074

ABSTRACT

Free-running mode-locked monolithic optical frequency combs offer a compact and simple alternative to complicated optical frequency division schemes. Ultra-low free-running noise performance of these oscillators removes the necessity of external phase stabilization, making the microwave systems uncomplicated and compact with lower power consumption while liberating the sidebands of the carrier from servo bumps typically present around hundreds of kilohertz offsets. Here we present a free-running monolithic laser-based 8 GHz photonic microwaves generation and characterization with a cryogenically cooled power splitter to demonstrate a state-of-the-art phase noise floor of less than -180 dBc/Hz below 1 MHz offset from the carrier.

2.
Opt Express ; 28(17): 25400-25409, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32907062

ABSTRACT

Phase noise performance of photonic microwave systems, such as optical frequency division (OFD), can surpass state-of-the-art electronic oscillators by several orders of magnitude. However, high-finesse cavities and active stabilization requirements in OFD systems make them complicated and potentially unfit for field deployment. Ultra-low noise mode-locked monolithic lasers offer a viable alternative for a compact and simple photonic microwave system. Here we present a free-running monolithic laser-based 8 GHz microwave generation with ultra-low phase noise performance comparable to laboratory OFD systems. The measured noise performance reached -130 dBc/Hz at 100 Hz, - 150 dBc/Hz at 1 kHz, and -167 dBc/Hz at 10 kHz offsets from the 8-GHz carrier. We also report a sub-Poissonian noise floor of -179 dBc/Hz above 30 kHz (timing noise floor of 32 zs Hz-1/2), which is ∼12 dB below the noise floor of time-invariant shot noise. In addition to the low phase noise, the system is compact, with a power consumption of less than 9 W, and offers excellent potential for mobile or space-borne applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...