Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 43(6): 965-978, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36623875

ABSTRACT

Recent findings from our laboratory demonstrated that the rostral nucleus of the solitary tract (rNST) retains some responsiveness to sugars in double-knock-out mice lacking either the T1R1+T1R3 (KO1+3) or T1R2+T1R3 (KO2+3) taste receptor heterodimers. Here, we extended these findings in the parabrachial nucleus (PBN) of male and female KO1+3 mice using warm stimuli to optimize sugar responses and employing additional concentrations and pharmacological agents to probe mechanisms. PBN T1R-independent sugar responses, including those to concentrated glucose, were more evident than in rNST. Similar to the NST, there were no "sugar-best" neurons in KO1+3 mice. Nevertheless, 1000 mm glucose activated nearly 55% of PBN neurons, with responses usually occurring in neurons that also displayed acid and amiloride-insensitive NaCl responses. In wild-type (WT) mice, concentrated sugars activated the same electrolyte-sensitive neurons but also "sugar-best" cells. Regardless of genotype, phlorizin, an inhibitor of the sodium-glucose co-transporter (SGLT), a component of a hypothesized alternate glucose-sensing mechanism, did not diminish responses to 1000 mm glucose. The efficacy of concentrated sugars for driving neurons broadly responsive to electrolytes implied an origin from Type III taste bud cells. To test this, we used the carbonic anhydrase (CA) inhibitor dorzolamide (DRZ), previously shown to inhibit amiloride-insensitive sodium responses arising from Type III taste bud cells. Dorzolamide had no effect on sugar-elicited responses in WT sugar-best PBN neurons but strongly suppressed them in WT and KO1+3 electrolyte-generalist neurons. These findings suggest a novel T1R-independent mechanism for hyperosmotic sugars, involving a CA-dependent mechanism in Type III taste bud cells.SIGNIFICANCE STATEMENT Since the discovery of Tas1r receptors for sugars and artificial sweeteners, evidence has accrued that mice lacking these receptors maintain some behavioral, physiological, and neural responsiveness to sugars. But the substrate(s) has remained elusive. Here, we recorded from parabrachial nucleus (PBN) taste neurons and identified T1R-independent responses to hyperosmotic sugars dependent on carbonic anhydrase (CA) and occurring primarily in neurons broadly responsive to NaCl and acid, implying an origin from Type III taste bud cells. The effectiveness of different sugars in driving these T1R-independent responses did not correlate with their efficacy in driving licking, suggesting they evoke a nonsweet sensation. Nevertheless, these salient responses are likely to comprise an adequate cue for learned preferences that occur in the absence of T1R receptors.


Subject(s)
Taste Buds , Taste , Animals , Female , Male , Mice , Amiloride/pharmacology , Glucose , Mice, Knockout , Sodium Chloride/pharmacology , Sugars/pharmacology , Taste/physiology , Taste Buds/physiology
2.
eNeuro ; 9(5)2022.
Article in English | MEDLINE | ID: mdl-36104278

ABSTRACT

The rostral nucleus of the solitary tract (rNST), the initial CNS site for processing gustatory information, is comprised of two major cell types, glutamatergic excitatory and GABAergic inhibitory neurons. Although many investigators have described taste responses of rNST neurons, the phenotypes of these cells were unknown. To directly compare the response characteristics of both inhibitory and noninhibitory neurons, we recorded from mice expressing Channelrhodopsin-2 (ChR2) under the control of GAD65, a synthetic enzyme for GABA. We observed that chemosensitive profiles of GABAergic taste neurons (G+TASTE) were similar to non-GABA taste neurons (G-TASTE) but had much lower response rates. We further observed a novel subpopulation of GABA cells located more ventrally in the nucleus that were unresponsive to taste stimulation (G+UNR), suggesting pathways for inhibition initiated by centrifugal sources. This preparation also allowed us to determine how optogenetic activation of the rNST GABA network impacted the taste responses of G-TASTE neurons. Activating rNST inhibitory circuitry suppressed gustatory responses of G-TASTE neurons across all qualities and chemosensitive types of neurons. Although the tuning curves of identified G-TASTE were modestly sharpened, the overall shape of response profiles and the ensemble pattern remained highly stable. These neurophysiological effects were consistent with the behavioral consequences of activating GAD65-expressing inhibitory neurons using DREADDs. In a brief-access licking task, concentration-response curves to both palatable (sucrose, maltrin) and unpalatable (quinine) stimuli were shifted to the right when GABA neurons were activated. Thus, the rNST GABAergic network is poised to modulate taste intensity across the qualitative and hedonic spectrum.


Subject(s)
Solitary Nucleus , Taste , Animals , Channelrhodopsins/genetics , GABAergic Neurons/physiology , Mice , Quinine/pharmacology , Sucrose/pharmacology , Taste/physiology
3.
Front Neurosci ; 14: 572328, 2020.
Article in English | MEDLINE | ID: mdl-33177980

ABSTRACT

D-norpseudoephedrine (NPE), also known as cathine, is found naturally in the shrub Catha edulis "Khat." NPE has been widely used as an appetite suppressant for the treatment of obesity. Although it is known that NPE acts on α1-adrenergic receptors, there is little information about the role of dopamine receptors on NPE's induced anorectic and weight loss effects. Equally untouched is the question of how NPE modulates neuronal activity in the nucleus accumbens shell (NAcSh), a brain reward center, and a pharmacological target for many appetite suppressants. To do this, in rats, we characterized the pharmacological effects induced by NPE on weight loss, food intake, and locomotion. We also determined the involvement of dopamine D1- and D2-like receptors using systemic and intra-NAcSh antagonists, and finally, we recorded single-unit activity in the NAcSh in freely moving rats. We found that NPE decreased 24-h food intake, induced weight loss, and as side effects increased locomotor activity and wakefulness. Also, intraperitoneal and intra-NAcSh administration of D1 and D2 dopamine antagonists partially reversed NPE's induced weight loss and food intake suppression. Furthermore, the D1 antagonist, SCH-23390, eliminated NPE-induced locomotion, whereas the D2 antagonist, raclopride, only delayed its onset. We also found that NPE evoked a net activation imbalance in NAcSh that propelled the population activity trajectories into a dynamic pharmacological brain state, which correlated with the onset of NPE-induced wakefulness. Together, our data demonstrate that NPE modulates NAcSh spiking activity and that both dopamine D1 and D2 receptors are necessary for NPE's induced food intake suppression and weight loss.

4.
J Neurophysiol ; 123(2): 843-859, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31913749

ABSTRACT

Strong evidence supports a major role for heterodimers of the type 1 taste receptor (T1R) family in the taste transduction of sugars (T1R2+T1R3) and amino acids (T1R1+T1R3), but there are also neural and behavioral data supporting T1R-independent mechanisms. Most neural evidence for alternate mechanisms comes from whole nerve recordings in mice with deletion of a single T1R family member, limiting conclusions about the functional significance and T1R independence of the remaining responses. To clarify these issues, we recorded single-unit taste responses from the nucleus of the solitary tract in T1R double-knockout (double-KO) mice lacking functional T1R1+T1R3 [KO1+3] or T1R2+T1R3 [KO2+3] receptors and their wild-type background strains [WT; C57BL/6J (B6), 129X1/SvJ (S129)]. In both double-KO strains, responses to sugars and a moderate concentration of an monosodium glutamate + amiloride + inosine 5'-monophosphate cocktail (0.1 M, i.e., umami) were profoundly depressed, whereas a panel of 0.6 M amino acids were mostly unaffected. Strikingly, in contrast to WT mice, no double-KO neurons responded selectively to sugars and umami, precluding segregation of this group of stimuli from those representing other taste qualities in a multidimensional scaling analysis. Nevertheless, residual sugar responses, mainly elicited by monosaccharides, persisted as small "sideband" responses in double-KOs. Thus other receptors may convey limited information about sugars to the central nervous system, but T1Rs appear critical for coding the distinct perceptual features of sugar and umami stimuli. The persistence of amino acid responses supports previous proposals of alternate receptors, but because these stimuli affected multiple neuron types, further investigations are necessary.NEW & NOTEWORTHY The type 1 taste receptor (T1R) family is crucial for transducing sugars and amino acids, but there is evidence for T1R-independent mechanisms. In this study, single-unit recordings from the nucleus of the solitary tract in T1R double-knockout mice lacking T1R1+T1R3 or T1R2+T1R3 receptors revealed greatly reduced umami synergism and sugar responses. Nevertheless, residual sugar responses persisted, mainly elicited by monosaccharides and evident as "sidebands" in neurons activated more vigorously by other qualities.


Subject(s)
Receptors, G-Protein-Coupled/physiology , Signal Transduction/physiology , Solitary Nucleus/physiology , Taste Buds/physiology , Taste Perception/physiology , Amino Acids/pharmacology , Animals , Dietary Sugars/pharmacology , Female , Flavoring Agents/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, G-Protein-Coupled/genetics
5.
Front Pharmacol ; 10: 1327, 2019.
Article in English | MEDLINE | ID: mdl-31780943

ABSTRACT

Obesity has become a serious public health problem. Although diet, surgery, and exercise are the primary treatments for obesity, these activities are often supplemented using appetite suppressants. A previous study reported that obesity specialists frequently prescribed a new drug combination for its treatment that includes phentermine (Phen; dopaminergic appetite suppressant), a serotonin (5-HT) precursor 5-hydroxytryptophan (5-HTP; an appetite suppressant that increases the 5-HT concentration), and carbidopa (CB; peripheral blocker of conversion of 5-HTP to 5-HT). Despite its widespread use, there is neither a preclinical study confirming the drug efficacy nor studies of its effects on the brain. To fill this gap, in rats for seven consecutive days, we administered Phen intraperitoneally at different doses either alone or in combination with a fixed dose of 5-HTP/CB. In a different group, we infused drugs via an intraperitoneal catheter while extracellular-recordings were performed in the nucleus accumbens shell (NAcSh), a brain region with dopamine-releasing effects that is involved in the action of appetite suppressants. We found that the triple-drug combination leads to greater weight-loss than each drug alone. Moreover, and as the treatment progresses, the triple drug combination partially reversed psychomotor side-effects induced by Phen. Electrophysiological results revealed that Phen alone evoked a net inhibitory imbalance in NAcSh population activity that correlated with the onset of psychomotor effects. In addition, and unlike the greater weight loss, the addition of 5-HTP/CB did not alter the Phen-evoked inhibitory imbalance in NAcSh responses. Subsequent experiments shed light on the underlying mechanism. That is the majority of NAcSh neurons modulated by 5-HTP/CB were suppressed by Phen. Notably, and despite acting via a different mechanism of action (DA for Phen vs. 5-HT for 5-HTP/CB), both drugs recruited largely overlapping NAcSh neuronal ensembles. These data suggest that the neural correlates of the greater weight loss could be located outside the NAcSh, in other brain circuits. Furthermore, we conclude that Phen + 5-HTP/CB is a potential treatment for overweight and obesity.

6.
Appetite ; 100: 152-61, 2016 May 01.
Article in English | MEDLINE | ID: mdl-26867698

ABSTRACT

Obesity is a public health problem caused by excessive consumption of high caloric diets and/or lack of physical activity. Although treatments for obesity include low caloric diets and exercise programs, these activities frequently are supplemented with appetite suppressants. For the short-term treatment of weight loss, diethylpropion (DEP) is a commonly used appetite suppressant. However, little is known with regard to how to improve its weight loss efficacy. We therefore evaluated, in rats, two administration protocols where the animals received daily injections of DEP. First, when these nocturnal animals were normally active (at night) and when they were normally inactive (daytime), and second, with or without high fat dietary restriction (HFDR). We observed that DEP induced a greater weight-loss administered when the animals were in their active phase than in their inactive phase. Moreover, DEP's administration during the inactive phase (and to a lesser degree in the active phase) promotes the consumption of food during normal sleeping time. In addition, we found that DEP-induced weight loss under ad libitum access to a HF diet, but its efficacy significantly improved under conditions of HFDR. In summary, the efficacy of DEP, and presumably other like appetite suppressants, is enhanced by carefully controlling the time it is administered and under dietary restriction of HF diets.


Subject(s)
Appetite Depressants/therapeutic use , Appetite Regulation/drug effects , Diet, Fat-Restricted , Diet, Reducing , Diethylpropion/therapeutic use , Overweight/drug therapy , Weight Loss/drug effects , Animals , Appetite Depressants/administration & dosage , Appetite Depressants/adverse effects , Appetite Depressants/pharmacokinetics , Biotransformation , Circadian Rhythm/drug effects , Combined Modality Therapy/adverse effects , Diet, High-Fat/adverse effects , Diethylpropion/administration & dosage , Diethylpropion/adverse effects , Diethylpropion/analogs & derivatives , Diethylpropion/blood , Diethylpropion/pharmacokinetics , Drug Administration Schedule , Energy Intake/drug effects , Half-Life , Injections, Intraperitoneal , Male , Overweight/blood , Overweight/diet therapy , Overweight/etiology , Phenylpropanolamine/analogs & derivatives , Phenylpropanolamine/blood , Rats, Sprague-Dawley
7.
J Neurophysiol ; 114(1): 585-607, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25972577

ABSTRACT

Obesity is a worldwide health problem that has reached epidemic proportions. To ameliorate this problem, one approach is the use of appetite suppressants. These compounds are frequently amphetamine congeners such as diethylpropion (DEP), phentermine (PHEN), and bupropion (BUP), whose effects are mediated through serotonin, norepinephrine, and dopaminergic pathways. The nucleus accumbens (NAc) shell receives dopaminergic inputs and is involved in feeding and motor activity. However, little is known about how appetite suppressants modulate its activity. Therefore, we characterized behavioral and neuronal NAc shell responses to short-term treatments of DEP, PHEN, and BUP. These compounds caused a transient decrease in weight and food intake while increasing locomotion, stereotypy, and insomnia. They evoked a large inhibitory imbalance in NAc shell spiking activity that correlated with the onset of locomotion and stereotypy. Analysis of the local field potentials (LFPs) showed that all three drugs modulated beta, theta, and delta oscillations. These oscillations do not reflect an aversive-malaise brain state, as ascertained from taste aversion experiments, but tracked both the initial decrease in weight and food intake and the subsequent tolerance to these drugs. Importantly, the appetite suppressant-induced weight loss and locomotion were markedly reduced by intragastric (and intra-NAc shell) infusions of dopamine antagonists SCH-23390 (D1 receptor) or raclopride (D2 receptor). Furthermore, both antagonists attenuated appetite suppressant-induced LFP oscillations and partially restored the imbalance in NAc shell activity. These data reveal that appetite suppressant-induced behavioral and neuronal activity recorded in the NAc shell depend, to various extents, on dopaminergic activation and thus point to an important role for D1/D2-like receptors (in the NAc shell) in the mechanism of action for these anorexic compounds.


Subject(s)
Appetite Depressants/pharmacology , Dopamine D2 Receptor Antagonists/pharmacology , Nucleus Accumbens/drug effects , Receptors, Dopamine D1/antagonists & inhibitors , Action Potentials/drug effects , Action Potentials/physiology , Animals , Appetite Depressants/adverse effects , Benzazepines/pharmacology , Bupropion/adverse effects , Bupropion/pharmacology , Diethylpropion/adverse effects , Diethylpropion/pharmacology , Drug Interactions , Eating/drug effects , Eating/physiology , Locomotion/drug effects , Locomotion/physiology , Male , Nucleus Accumbens/physiology , Phentermine/adverse effects , Phentermine/pharmacology , Raclopride/pharmacology , Random Allocation , Rats, Sprague-Dawley , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Sleep Initiation and Maintenance Disorders/chemically induced , Stereotyped Behavior/drug effects , Stereotyped Behavior/physiology , Weight Loss/drug effects , Weight Loss/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...