Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1152985, 2023.
Article in English | MEDLINE | ID: mdl-37396348

ABSTRACT

Streptomyces is a group of microbes known for antibiotic production and has contributed to more than 70% of present commercially available antibiotics. These antibiotics are important in the management, protection, and treatment of chronic illnesses. In the present study, the isolated S. tauricus strain from mangrove soil in Mangalore, India (GenBank accession number: MW785875) was subjected for differential cultural characterization, phenotype involving brown pigmentation, filamentous mycelia, and ash-colored spore production was observed using field emission scanning electron microscopy (FESEM) analysis revealing filamentous mycelia possessing a straight spore chain. Spores were visualized as elongated, rod-shaped, smooth surfaces with curved edges. After optimized growth conditions for S. tauricus on starch-casein agar medium, the GC/MS analysis of S. tauricus intracellular extract detected bioactive compounds reported for pharmacological applications. Analyzed using the NIST library, most of the bioactive compounds identified in intracellular extract had molecular weights of less than 1 kDa. On the PC3 cell line, the Sephadex G-10 partially purified eluted peak protein fraction demonstrated significant anticancer activity. The LCMS analysis revealed the presence of Tryprostatin B, Fumonisin B1, Microcystin LR, and Surfactin C with molecular weights below 1 kDa. This study found that small molecular weight microbial compounds are more effective in a variety of biological applications.

2.
Prep Biochem Biotechnol ; 53(7): 713-727, 2023.
Article in English | MEDLINE | ID: mdl-36565171

ABSTRACT

Growing public concern toward environmental sustainability is currently motivating a paradigm shift toward designing easily degradable plastics that can replace conventional synthetic plastics. The massive rise in food waste generation has led to an increased burden on landfills, thereby resulting in the higher emission of greenhouse gases. Using this food waste to produce bioplastics will benefit not only the environment but also develop a systematic food waste management system. Moreover, bioplastics are preferred due to the use of biomaterials derived from renewable resources. Furthermore, bioplastics degrade faster than conventional synthetic plastics, which take years to degrade. The biodegradation of bioplastics occurs under normal environmental conditions and disintegrates into carbon dioxide, water, biomass, and inorganic compounds without producing hazardous residues. In this review, we will discuss the synthesis of starch based bioplastics using discarded parts of various fruits and vegetables. Furthermore, we will address the importance of various components in the development of starch based bioplastics, such as fillers, plasticizers, and other additives that are essential in providing the bioplastic with different physio-mechanical properties. Therefore, bioplastic production using food waste will pave the way to achieve systematic waste management and environmental sustainability in the near future.


Subject(s)
Refuse Disposal , Vegetables , Fruit , Starch , Plastics/chemistry
3.
J Basic Microbiol ; 63(3-4): 389-403, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35876342

ABSTRACT

Microbial resistance and deprivation of the effective drugs have become the foremost problem that propels to seek out for advanced approach. This concept initiated a need to search for more effective antimicrobial compounds from reliable sources. The Streptomyces is grouped under phylum Actinobacteria and are considered prolific producers of antibiotics, around 70% of presently available antibiotics are contributed by Streptomyces alone. In this study, Mangroves of the Mangalore Coast offered a unique source for screening Actinomyces group of microorganisms. We investigated on the four soil samples collected from Mangrove swamps of Mangalore, Karnataka, India. Based on their culture traits, the 18 distinct Actinomyces isolates were analyzed through a series of morphological and biochemical tests on starch casein nitrate (SCN) media. Culture biomasses were subjected for intracellular protein extraction through acetone precipitation method; the extracted proteins from each Actinomyces isolate were examined for antimicrobial activity against test organisms. The isolate ANTB-YKMU4 showed potential antimicrobial activity against significant number of test organisms; Bacillus cereus, Proteus vulgaris, Staphylococcus aureus, Salmonella typhimurium, and Pseudomonas aeruginosa. The isolate ANTB-YKMU4 through 16 s rRNA gene sequence analysis was identified as Streptomyces tauricus strain with GenBank accession no. MW785875.1. The S. tauricus further cultivated for efficient biomass growth on SCN media for subsequent protein extraction and purification by a series of Electrophoretic and chromatographic techniques. Thus, by intracellular extractions from S. tauricus resulted in the identification of peptide with a molecular weight of 266 Da that was characterized by LC-MS.


Subject(s)
Anti-Infective Agents , Streptomyces , Antimicrobial Peptides , Soil , Soil Microbiology , Microbial Sensitivity Tests , India , Anti-Bacterial Agents/metabolism , Anti-Infective Agents/metabolism , Streptomyces/metabolism , RNA, Ribosomal, 16S/genetics , Phylogeny
4.
J Nat Med ; 67(1): 123-36, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22467255

ABSTRACT

In diseases such as cancer, induction of apoptosis has been a new target for mechanism-based drug discovery. The central component of the process of apoptosis is a proteolytic system involving a family of proteases called caspases. Apoptosis involves characteristic morphological and biochemical events ultimately leading to cell demise. Apoptotic induction is evidently central to the mechanism of action of plant-derived anticancer drugs. Extract of the medicinal plant, Bacopa monnieri, inhibits tumor cell proliferation and accumulation of malignant ascites fluid. The crude sample when subjected to Soxhlet extraction yielded different solvent extracts of which the aqueous extract showed biological activity of apoptosis in Ehrlich ascites tumor cell lines (EAT). Bacopa monnieri water extract (BMWE) treatment of EAT cells produced apoptotic morphological characteristics and in-vivo DNA fragmentation, which is due to the activity of an endogenous endonuclease. The endonuclease responsible for DNA fragmentation acts downstream of caspase-3 activity and is also referred to as caspase-activated DNase (CAD). The CAD constitutively expressed in the cell cytoplasm is translocated into the nucleus upon BMWE treatment, as verified by Western blotting, leading to DNA fragmentation and to programmed cell death. The expression of the pro-apoptotic gene Bax was increased and the expression of the anti-apoptotic gene Bcl-2 was decreased by BMWE treatment. Considering the above results, BMWE was able induce apoptosis in EAT cells via Bax-related caspase-3 activation. This may provide experimental data for the further clinical use of BMWE in cancer.


Subject(s)
Apoptosis/drug effects , Bacopa/chemistry , Caspase 3/metabolism , Plant Extracts/pharmacology , Plant Proteins/chemistry , Plant Proteins/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Animals , Cell Line, Tumor , Gene Expression Regulation, Plant/drug effects , Mice , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...