Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Phys Condens Matter ; 28(41): 414011, 2016 10 19.
Article in English | MEDLINE | ID: mdl-27545613

ABSTRACT

The approach developed earlier to describe the dimerizing shielded attractive shell (SAS) primitive model of chemical association due to Cummings and Stell is generalized and extended to include a description of a polymerizing SAS model. Our extension is based on the combination of the resummed thermodynamic perturbation theory for central force (RTPT-CF) associating potential and self consistent scheme, which takes into account the changes in the system free volume due to association. Theoretical results for thermodynamical properties of the model at different bonding length, density and temperature are compared against newly generated computer simulation results. The theory gives very accurate predictions for the model with bonding length L (*) from the range 0 < L (*) < 0.6 at all values of the density and temperature studied, including the limit of infinitely large temperature.

3.
J Chem Phys ; 143(4): 044904, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26233161

ABSTRACT

We propose an analytical solution of the multi-density Ornstein-Zernike equation supplemented by the associative Percus-Yevick closure relations specifically designed to describe the equilibrium properties of the novel class of patchy colloidal particles represented by the inverse patchy colloids with arbitrary number of patches. Using Baxter's factorization method, we reduce solution of the problem to the solution of one nonlinear algebraic equation for the fraction of the particles with one non-bonded patch. We present closed-form expressions for the structure (structure factor) and thermodynamic (internal energy) properties of the system in terms of this fraction (and parameters of the model). We perform computer simulation studies and compare theoretical and computer simulation predictions for the pair distribution function, internal energy, and number of single and double bonds formed in the system, for two versions of the model, each with two and three patches. We consider the models with formation of the double bonds blocked by the patch-patch repulsion and the models without patch-patch repulsion. In general very good agreement between theoretical and computer simulation results is observed.

4.
Article in English | MEDLINE | ID: mdl-25122304

ABSTRACT

We propose an integral equation theory for a mixture of macroions, counterions, and co-ions in a waterlike fluid in which all the components are accounted for explicitly. The macroions can carry positive and negative surface charges simultaneously, mimicking in this way the situation occurring in protein solutions. To solve this complex model numerically, we utilize the associative mean spherical approximation, developed earlier for low-molecular-mass charge-symmetric electrolyte solutions. To illustrate the potential of this approach, we present numerical results for various experimental conditions. Among the measurable properties we choose to calculate the osmotic coefficient, a quantity that reflects the stability of the solution. We show that the osmotic coefficient depends not only on the magnitude of the net charge on the macroion but also on its sign, as well as on the nature of the low-molecular-mass electrolyte present. These specific ion effects are the consequence of differences in hydration between the ions in solution and charged groups on the macroion.


Subject(s)
Models, Molecular , Water/chemistry , Ions/chemistry , Osmosis , Proteins/chemistry , Surface Properties
5.
J Phys Chem B ; 118(30): 9076-84, 2014 Jul 31.
Article in English | MEDLINE | ID: mdl-25014879

ABSTRACT

We present a version of density functional approach for the system of patchy colloidal particles confined in slitlike pores with hard walls. Each particle possesses two off-center sites of the types A and B, and in addition to single A-A and B-B bonds, formation of the double A-B-A and B-A-B bonds is allowed. The proposed approach is based on the fundamental measure theory and the second order perturbation theory of Wertheim. For the model in question, a re-entrant phase behavior in a bulk system has been found [Kalyuzhnyi Y. V.; Cummings, P. T., J. Chem. Phys. 2013, 139, 104905] . Our calculations revealed that the re-entrant phase diagrams are also observed in confined systems. The upper critical temperature decreases with the pore width, while the lower critical temperature increases very slightly.

6.
J Phys Chem Lett ; 5(24): 4260-4, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-26273972

ABSTRACT

The lack of a simple analytical description of the hard-sphere fluid in a matrix with hard-core obstacles is limiting progress in the development of thermodynamic perturbation theories for the fluid in random porous media. We propose a simple and highly accurate analytical scheme, which allows us to calculate thermodynamic and percolation properties of a network-forming fluid confined in the random porous media, represented by the hard-sphere fluid and overlapping hard-sphere matrices, respectively. Our scheme is based on the combination of scaled-particle theory, Wertheim's thermodynamic perturbation theory for associating fluids and extension of the Flory-Stockmayer theory for percolation. The liquid-gas phase diagram and percolation threshold line for several versions of the patchy colloidal fluid model confined in a random porous media are calculated and discussed. The method presented enables calculation of the thermodynamic and percolation properties of a large variety of polymerizing and network-forming fluids confined in random porous media.

7.
J Chem Phys ; 139(10): 104905, 2013 Sep 14.
Article in English | MEDLINE | ID: mdl-24050363

ABSTRACT

We propose a second-order thermodynamic perturbation theory for a hard-sphere patchy colloidal model with two doubly bondable patches of type A and B. AB bonding results in the formation of a three-dimensional network of the particles and AA and BB bonding promotes chain formation. The theory is applied to study the phase behaviour of the model at different values of the potential model parameters. Competition between network and chain formation gives rise to a re-entrant phase behaviour with upper and lower critical points. The model with an additional van der Waals type of interaction may have a re-entrant phase diagram with three critical points and two separate regions of the liquid-gas phase coexistence. We analyze our results in terms of the fractions of the particles in different bonding states and conclude that re-entrant phase coexistence can be seen as a coexistence between a gas phase rich in chain ends and a liquid phase rich in branch points.

8.
J Chem Phys ; 139(4): 044909, 2013 Jul 28.
Article in English | MEDLINE | ID: mdl-23902021

ABSTRACT

We propose a second-order version of the resummed thermodynamic perturbation theory for patchy colloidal models with arbitrary number of multiply bondable patches. The model is represented by the hard-sphere fluid system with several attractive patches on the surface and resummation is carried out to account for blocking effects, i.e., when the bonding of a particle restricts (blocks) its ability to bond with other particles. The theory represents an extension of the earlier proposed first order resummed thermodynamic perturbation theory for central force associating potential and takes into account formation of the rings of the particles. In the limiting case of singly bondable patches (total blockage), the theory reduces to Wertheim thermodynamic perturbation theory for associating fluids. Closed-form expressions for the Helmholtz free energy, pressure, internal energy, and chemical potential of the model with an arbitrary number of equivalent doubly bondable patches are derived. Predictions of the theory for the model with two patches appears to be in a very good agreement with predictions of new NVT and NPT Monte Carlo simulations, including the region of strong association.

9.
J Chem Phys ; 137(24): 244910, 2012 Dec 28.
Article in English | MEDLINE | ID: mdl-23277959

ABSTRACT

We propose an improved version of Wertheim's first order thermodynamic perturbation theory for the square-well m-point model of patchy colloids. Our version of the theory takes into account changes in the free volume of the system due to bond formation. The new theory is a significant improvement, giving good agreement with Monte Carlo simulations of the model.

10.
J Chem Phys ; 135(1): 014501, 2011 Jul 07.
Article in English | MEDLINE | ID: mdl-21744904

ABSTRACT

A resummed thermodynamic perturbation theory for associating fluids with multiply bondable central force associating potential is extended for the fluid with multiple number of multiply bondable associating sites. We consider a multi-patch hard-sphere model for associating fluids. The model is represented by the hard-sphere fluid system with several spherical attractive patches on the surface of each hard sphere. Resummation is carried out to account for blocking effects, i.e., when the bonding of a particle restricts (blocks) its ability to bond with other particles. Closed form analytical expressions for thermodynamical properties (Helmholtz free energy, pressure, internal energy, and chemical potential) of the models with arbitrary number of doubly bondable patches at all degrees of the blockage are presented. In the limiting case of total blockage, when the patches become only singly bondable, our theory reduces to Wertheim's thermodynamic perturbation theory (TPT) for polymerizing fluids. To validate the accuracy of the theory we compare to exact values, for the thermodynamical properties of the system, as determined by Monte Carlo computer simulations. In addition we compare the fraction of multiply bonded particles at different values of the density and temperature. In general, predictions of the present theory are in good agreement with values for the model calculated using Monte Carlo simulations, i.e., the accuracy of our theory in the case of the models with multiply bondable sites is similar to that of Wertheim's TPT in the case of the models with singly bondable sites.

11.
J Chem Phys ; 133(4): 044502, 2010 Jul 28.
Article in English | MEDLINE | ID: mdl-20687658

ABSTRACT

A resummed thermodynamic perturbation theory for associating fluids with multiply bondable central force associating potential is proposed. We consider a simple one-patch model for associating fluids. The model is represented by the hard-sphere system with a circular attractive patch on the surface of each hard-sphere. Resummation is carried out to account for the blocking effects, i.e., when the bonding of a particle restricts (blocks) its ability to bond with other particles. Closed form analytical expressions for thermodynamical properties (Helmholtz free energy, pressure, internal energy, and chemical potential) of the model with a doubly bondable patch at all degrees of the blockage are presented. In the limiting case of total blockage, when the particles become only singly bondable, our theory reduces to Wertheim's thermodynamic perturbation theory for dimerizing fluids. To validate the accuracy of the theory we compare to exact values, for the thermodynamical properties of the system, as determined by Monte Carlo computer simulations. In addition we compare the fraction of multiply bonded particles at different values of the density and temperature. Very good agreement between predictions of the theory, corrected for ring formation, and Monte Carlo computer simulation values was found in all cases studied. Less accurate are the original versions of the theory and Wertheim's thermodynamic perturbation theory for dimerization, especially at lower temperatures and larger sizes of the attractive patch.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 63(1 Pt 1): 011209, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11304248

ABSTRACT

The distortion of structure of a simple, inverse 12 soft-sphere fluid undergoing plane Couette flow is studied by nonequilibrium molecular dynamics (NEMD) and equilibrium molecular dynamics (EMD) with a high-shear-rate version of the nonequilibrium (NE) potential obtained recently from the NE distribution function theory of Gan and Eu [Phys. Rev. A 45, 3670; 46, 6344 (1992)]. The theory suggests a NE potential under which the equilibrium structure of the fluid is that of a NE fluid, and also suggests a corresponding Ornstein-Zernike equation with its closure relations. As in the low-shear-rate case [Yu. V. Kalyuzhnyi, S. T. Cui, P. T. Cummings, and H. D. Cochran, Phys. Rev. E 60, 1716 (1999)] the agreement between EMD and the modified hypernetted chain version of the theory is good. Although the high-shear-rate version of the NE potential improves the agreement between NEMD and EMD results (in comparison with the low-shear-rate version), its predictions are still unsatisfactory. With the high-shear-rate NE potential, EMD gives qualitatively correct predictions only for the shift of the position of the first maximum of the NE distribution function. The corresponding changes in the magnitude of the first maximum predicted by EMD have an opposite direction in comparison with those predicted by NEMD. It is concluded that the NE potential used is not very successful, and more accurate models for the potential are needed.

13.
Article in English | MEDLINE | ID: mdl-11969953

ABSTRACT

Anisotropic pair distribution functions for a simple, soft sphere fluid at moderate and high density under shear have been calculated by nonequilibrium molecular dynamics, by equilibrium molecular dynamics with a nonequilibrium potential, and by a nonequilibrium distribution function theory [H. H. Gan and B. C. Eu, Phys. Rev. A 45, 3670 (1992)] and some variants. The nonequilibrium distribution function theory consists of a nonequilibrium Ornstein-Zernike relation, a closure relation, and a nonequilibrium potential and is solved in spherical harmonics. The distortion of the fluid structure due to shear is presented as the difference between the nonequilibrium and equilibrium pair distribution functions. From comparison of the results of theory against results of equilibrium molecular dynamics with the nonequilibrium potential at low shear rates, it is concluded that, for a given nonequilibrium potential, the theory is reasonably accurate, especially with the modified hypernetted chain closure. The equilibrium molecular-dynamics results with the nonequilibrium potential are also compared against the results of nonequilibrium molecular dynamics and suggest that the nonequilibrium potential used is not very accurate. In continuing work, a nonequilibrium potential better suited to high shear rates [H. H. Gan and B. C. Eu, Phys. Rev. A 46, 6344 (1992)] is being tested.

SELECTION OF CITATIONS
SEARCH DETAIL
...