Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(7): e28749, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38586393

ABSTRACT

Declining soil fertility particularly phosphorus deficiency, low organic carbon, moisture stress and high cost of input are factors limiting soybean yield in the Nigeria savanna. Supplementary irrigation, nutrient application and inoculation with Bradyrhizobium could increase the grain yield of soybean. We evaluated the effects of Rhizobia inoculant, phosphorus fertilization, manure, and supplementary irrigation on the nodulation and productivity of a tropical soybean variety in two locations in northern Nigeria in the 2017 and 2018 cropping seasons. The treatments consisted of five input bundles: Supplementary irrigation +17.5 kg P ha-1 + 4 t ha-1 poultry manure + nodumax inoculant (S + P + M + I); 17.5 kg P ha-1 + 4 t ha-1 poultry manure + nodumax inoculant (P + M + I); 17.5 kg P ha-1 + nodumax inoculant (P + I); 17.5 kg PP ha-1 (P); and nodumax inoculant (I). Economic analysis was done to determine the benefit-cost ratio (BCR) for each input bundle. In Kano, the input bundle S + P + M + I produced mean number of nodules that were 38, 102, 200 and 352% higher than that of input bundles P + M + I, P + I, P and I, respectively. At Lere, the application of input bundle S + P + M + I increased mean number of nodules by 33, 81, 93 and 182% over that of input bundles P + M + I, P + I, P and I, respectively. Mean grain yield in Kano was greater for input bundle S + P + M + I over P + M + I, P + I, P and I bundles by 31, 50, 64 and 223%, respectively. In Lere, grain yield for input bundle S + P + M + I was higher than that of input bundles P + M + I, P + I, P and I only, by 27, 47, 41 and 184% respectively. The input bundle P + M + I produced the highest BCR (1.4) in Kano and application only of P produced the highest BCR (1.3) in Lere. Supplementary irrigation was not found to be profitable due to the high cost of supplementary irrigation.The application of P with or without manure/inoculant is recommeded for profitable soybean production in the savannas of Nigeria.

2.
Sci Rep ; 12(1): 6747, 2022 04 25.
Article in English | MEDLINE | ID: mdl-35468980

ABSTRACT

Soybean production is limited by poor soil fertility and unstable rainfall due to climate variability in the Nigeria savannas. There is a decline in the amount and duration of rainfall as one moves from the south to north of the savanna zones. The use of adapted soybean varieties and optimum sowing windows are avenues to increase productivity in the face of climate variability. Crop simulation models can be used as tools for the evaluation of alternative management options for a particular location, including fertilizer application rates, plant density, sowing dates and land use. In this study, we evaluated the performance of the Cropping System Model (CSM)-CROPGRO-Soybean to determine optimum sowing windows for three contrasting soybean varieties (TGX1835-10E, TGX1904-6F and TGX1951-3F) cultivated in the Nigeria savannas. The model was calibrated using data from ten field experiments conducted under optimal conditions at two sites (BUK and Dambatta) in Kano in the Sudan savanna (SS) agro-ecology over four growing seasons. Data for model evaluation were obtained from independent experiment for phosphorus (P) response trials conducted under rainfed conditions in two locations (Zaria and Doguwa) in the northern Guinea savanna (NGS) zone. The model calibration and evaluation results indicated good agreement between the simulated and observed values for the measured parameters. This suggests that the CROPGRO-Soybean model was able to accurately predict the performance of soybean in the Nigeria savannas. Results from long-term seasonal analysis showed significant differences among the agro-ecologies, sowing windows and the soybean varieties for grain yield. Higher yields are simulated among the soybean varieties in Zaria in the NGS than in Kano the SS and Jagiri in the southern Guinea savanna (SGS) agro-ecological zones. Sowing from June 1 to July 5 produced optimal yield of TGX1951-3F and TGX1835-10E beyond which yield declined in Kano. In Zaria and Jagiri the simulated results show that, sowing from June 1 to July 12 are appropriate for all the varieties. The variety TGX1951-3F performed better than TGX1904-6F and TGX1835-10E in all the agro-ecologies. The TGX1951-3F is, therefore, recommended for optimum grain yield in the savannas of northern Nigeria. However, the late maturing variety TGX1904-6F is not recommended for the SS due to the short growing season in this zone.


Subject(s)
Fabaceae , Glycine max , Edible Grain , Grassland , Nigeria , Soil
3.
Int J Agric Sustain ; 15(6): 613-631, 2017.
Article in English | MEDLINE | ID: mdl-30636968

ABSTRACT

Low and declining soil fertility has been recognized for a long time as a major impediment to intensifying agriculture in sub-Saharan Africa (SSA). Consequently, from the inception of international agricultural research, centres operating in SSA have had a research programme focusing on soil and soil fertility management, including the International Institute of Tropical Agriculture (IITA). The scope, content, and approaches of soil and soil fertility management research have changed over the past decades in response to lessons learnt and internal and external drivers and this paper uses IITA as a case study to document and analyse the consequences of strategic decisions taken on technology development, validation, and ultimately uptake by smallholder farmers in SSA. After an initial section describing the external environment within which soil and soil fertility management research is operating, various dimensions of this research area are covered: (i) 'strategic research', 'Research for Development', partnerships, and balancing acts, (ii) changing role of characterization due to the expansion in geographical scope and shift from soils to farms and livelihoods, (iii) technology development: changes in vision, content, and scale of intervention, (iv) technology validation and delivery to farming communities, and (v) impact and feedback to the technology development and validation process. Each of the above sections follows a chronological approach, covering the last five decades (from the late 1960s till today). The paper ends with a number of lessons learnt which could be considered for future initiatives aiming at developing and delivering improved soil and soil fertility management practices to smallholder farming communities in SSA.

SELECTION OF CITATIONS
SEARCH DETAIL
...