Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Plant ; 176(2): e14312, 2024.
Article in English | MEDLINE | ID: mdl-38651242

ABSTRACT

In plant tissue culture, callus formation serves as a crucial mechanism for regenerating entire plants, enabling the differentiation of diverse tissues. Researchers have extensively studied the influence of media composition, particularly plant growth regulators, on callus behavior. However, the impact of the physical properties of the media, a well-established factor in mammalian cell studies, has received limited attention in the context of plant tissue culture. Previous research has highlighted the significance of gelling agents in affecting callus growth and differentiation, with Agar, Phytagel, and Gelrite being the most used options. Despite their widespread use, a comprehensive comparison of their physical properties and their subsequent effects on callus behavior remains lacking. Our study provides insights into optimizing plant tissue culture media by analyzing the physical properties of gelling agents and their impact on callus induction and differentiation. We compared the phenotypes of calli grown on media composed of these different gelling agents and correlated them to the physical properties of these media. We tested water retention, examined pore size using cryo-SEM, measured the media mechanical properties, and studied diffusion characteristics. We found that the mechanical properties of the media are the only quality correlated with callus phenotype.


Subject(s)
Culture Media , Culture Media/chemistry , Gels , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Tissue Culture Techniques/methods , Agar/chemistry , Cell Differentiation/drug effects
2.
J Environ Qual ; 44(5): 1366-75, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26436254

ABSTRACT

The transport and fate of bacteria in porous media is influenced by physicochemical and biological properties. This study investigated the effect of swimming motility on the attachment of cells to silica surfaces through comprehensive analysis of cell deposition in model porous media. Distinct motilities were quantified for different strains using global and cluster-based statistical analyses of microscopic images taken under no-flow condition. The wild-type, flagellated strain DJ showed strong swimming as a result of the actively swimming subpopulation whose average speed was 25.6 µm/s; the impaired swimming of strain DJ77 was attributed to the lower average speed of 17.4 µm/s in its actively swimming subpopulation; and both the nonflagellated JZ52 and chemically treated DJ cells were nonmotile. The approach and deposition of these bacterial cells were analyzed in porous media setups, including single-collector radial stagnation point flow cells (RSPF) and two-dimensional multiple-collector micromodels under well-defined hydrodynamic conditions. In RSPF experiments, both swimming and nonmotile cells moved with the flow when at a distance ≥20 µm above the collector surface. Closer to the surface, DJ cells showed both horizontal and vertical movement, limiting their contact with the surface, while chemically treated DJ cells moved with the flow to reach the surface. These results explain how wild-type swimming reduces attachment. In agreement, the deposition in micromodels was also lowest for DJ compared with those for DJ77 and JZ52. Wild-type swimming specifically reduced deposition on the upstream surfaces of the micromodel collectors. Conducted under environmentally relevant hydrodynamic conditions, the results suggest that swimming motility is an important characteristic for bacterial deposition and transport in the environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...