Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
World J Nucl Med ; 19(1): 36-40, 2020.
Article in English | MEDLINE | ID: mdl-32190020

ABSTRACT

With the increasing use of 18F-fluorodeoxyglucose (FDG) positron emission tomography-computed tomography (PET-CT) scans in oncology, the finding of thyroid incidentalomas, also popularly described as PET-associated incidental neoplasms (PAINs) of the thyroid gland is not unusual. The 18F-FDG PET-CT scans of all patients who underwent imaging for indications other than thyroid malignancy at our tertiary care center between January 1 and December 31, 2017, were retrospectively reviewed for PAINs of the thyroid. A total of 1737 18F-FDG PET-CT scans were done at our center in the year 2017. 288 thyroid incidentalomas were detected in the said period; the rate of PET-CT-detected thyroid incidentalomas being 16.58%, focal incidentalomas among them being 11.7%. Only 29 out of 204 patients (14.21%) with focal thyroid incidentalomas in our cohort underwent an aspiration cytology and/or ultrasound. The rate of malignancy among the PET detected focal thyroid incidentalomas in the cohort of patients with a proven diagnosis was 10.34%. Our study highlights the challenges in the evaluation and management of PAIN in a tertiary care oncology setting. None of the factors studied including nodule size and standardized uptake value predicted the risk of malignancy. Clinicians specializing in the management of thyroid nodules need to understand the clinical significance of the PAIN, and we hope that our unique experience adds to the limited clinical information available in this regard.

2.
ACS Appl Mater Interfaces ; 11(43): 40114-40124, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31577112

ABSTRACT

In this work, we proposed an efficient heterostructure photocatalyst by integrating the ferroelectric BaTiO3 (BTO) layer with the semiconductor MoO3 layer, availing the ferroelectric polarization of BaTiO3 and high generation of photoinduced charge carriers in the MoO3 layer. The effect of MoO3 layer thickness (tMoO3) on the photocatalytic efficiency of the BTO/MoO3 heterostructures is found to be optimum at tMoO3 = 67 nm as tMoO3 varies from 40 to 800 nm. The BTO/MoO3 heterostructure with tMoO3 = 67 nm exhibits a high efficiency of 86% for the degradation of rhodamine B (RhB) under the exposure of UV-visible light for 60 min. The photocatalysis rate kinetics analysis reveals that the rate constant in the heterostructure is 1.7 times of pure BTO and 3.2 times of pure MoO3 films. The enhanced photocatalytic activity in the heterostructures is attributed to the electric field-driven carrier separation due to the ferroelectric polarization and the heterojunction band bending. The charge coupling effect between BaTiO3 and MoO3 is evident from the current-voltage characteristics. The maximum lattice strain in the heterostructure with tMoO3 = 67 nm as evident from X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and photoluminescence (PL) analysis further confirms the charge transfer between the layers. The degradation as well as decolorization efficiency of the BTO/MoO3 heterostructure is higher than that of pure BTO and MoO3 films. Radical trapping experiments reveal that electrons are the major contributors to the photocatalytic activity of the BTO/MoO3 heterostructure. The reusability test shows only a reduction of 5% in the efficiency of the heterostructure after five photocatalysis cycles. The heterostructure can also efficiently decompose the other dyes such as rose bengal and methyl violet. Thus, our findings prove that an efficient and reusable photocatalyst can be designed through the integration of the ferroelectrics with the semiconductor layers.

3.
Sci Rep ; 7: 46350, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28397865

ABSTRACT

An enhanced resistive switching (RS) effect is observed in Pt/BaTiO3(BTO)/ITO ferroelectric structures when a thin HfO2:Al2O3 (HAO) dielectric layer is inserted between Pt and BTO. The P-E hysteresis loops reveal the ferroelectric nature of both Pt/BTO/ITO and Pt/HAO/BTO/ITO structures. The relation between the RS and the polarization reversal is investigated at various temperatures in the Pt/HAO/BTO/ITO structure. It is found that the polarization reversal induces a barrier variation in the Pt/HAO/BTO interface and causes enhanced RS, which is suppressed at Curie temperature (Tc = 140 °C). Furthermore, the Pt/HAO/BTO/ITO structures show promising endurance characteristics, with a RS ratio >103 after 109 switching cycles, that make them potential candidates for resistive switching memory devices. By combining ferroelectric and dielectric layers this work provides an efficient way for developing highly efficient ferroelectric-based RS memory devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...