Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Immunol Immunopathol ; 202: 52-62, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30078599

ABSTRACT

Squamous cell carcinoma is the most common oral cancer in the cat and presents as a locally aggressive lesion for which an effective therapeutic protocol remains elusive. Feline oral squamous cell carcinoma (OSCC) shares many clinical characteristics with human head and neck squamous cell carcinoma (HNSCC). Accordingly, present studies were conducted to determine similarities for immune markers shared by feline OSCC and human HNSCC. Biopsies harvested from a feline patient cohort-1 (n = 12) were analyzed for lymphoid cell infiltrates by immunohistochemistry (IHC). Results revealed unique patterns of T cell infiltration involving both neoplastic epithelium and stroma that were detected in most patient tumor biopsies (92%) examined by IHC staining for CD3. Intratumoral B cell infiltrates were detected within tumor stroma only, based on IHC staining for CD79a and CD20 for all patients within the same cohort-1. Infiltration of tumors by a regulatory CD4 T cell subset (Tregs) defined by expression of the forkhead transcription factor FoxP3, was also detected in biopsies from 57% of patients and involved infiltration of neoplastic epithelium and stroma. Patient biopsies were also examined for expression of immunomodulator cyclooxygenase (COX)-2 and revealed positive but weak staining of neoplastic epithelium in a significant proportion of cases (75%). Interestingly, COX-2 expression was detected in both neoplastic epithelium and stroma. Blood collected from a second cohort of feline OSCC patients (n = 9) revealed an increased frequency of circulating CD4+FoxP3+ T cells when compared to healthy adult controls (n = 7) (P = 0.045), although frequencies of CD4+CD25+FoxP3+ T cells were comparable between patients and healthy pet cat controls. Lastly, biopsies from feline OSCC patients were characterized for histologic subtype using a classification scheme previously described for human HNSCC. This analysis revealed the conventional subtype as the predominant variant (75%) with conventional subtypes split evenly between well differentiated and moderately differentiated carcinomas. Two cases were classified as papillary and one case as basaloid subtypes. Correlations between subtype, immune marker scores or circulating Treg frequencies and clinical characteristics or outcome were not detected, most likely due to small patient numbers within patient cohorts. However, findings from these studies provide a preliminary step in the characterization of immune and histologic markers that will be critical to defining prognostic immune markers for feline OSCC and potential targets for testing of immunotherapeutics also relevant to human HNSCC in future studies.


Subject(s)
Carcinoma, Squamous Cell/veterinary , Cat Diseases/immunology , Mouth Neoplasms/veterinary , Animals , Biomarkers/blood , Biopsy , Carcinoma, Squamous Cell/immunology , Cats/immunology , Cyclooxygenase 2/genetics , Cyclooxygenase 2/immunology , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Immunohistochemistry , Male , Mouth/pathology , Mouth Neoplasms/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/immunology
2.
Genome Announc ; 3(3)2015 Jun 04.
Article in English | MEDLINE | ID: mdl-26044413

ABSTRACT

The complete genome sequence of the ALL-03 strain of rat cytomegalovirus (RCMV) has been determined. The RCMV genome has a length of 197,958 bp and is arranged as a single unique sequence flanked by 504-bp terminal direct repeats. This strain is closely related to the English strain of RCMV in terms of genetic arrangement but differs slightly in size.

3.
Virus Res ; 165(1): 17-28, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22280883

ABSTRACT

Feline infectious peritonitis virus (FIPV) was presumed to arise from mutations in the 3c of a ubiquitous and largely nonpathogenic feline enteric coronavirus (FECV). However, a recent study found that one-third of FIPV isolates have an intact 3c and suggested that it is not solely involved in FIP but is essential for intestinal replication. In order to confirm these assumptions, 27 fecal and 32 FIP coronavirus isolates were obtained from resident or adopted cats from a large metropolitan shelter during 2008-2009 and their 3a-c, E, and M genes sequenced. Forty percent of coronavirus isolates from FIP tissues had an intact 3c gene, while 60% had mutations that truncated the gene product. The 3c genes of fecal isolates from healthy cats were always intact. Coronavirus from FIP diseased tissues consistently induced FIP when given either oronasally or intraperitoneally (i.p.), regardless of the functional status of their 3c genes, thus confirming them to be FIPVs. In contrast, fecal isolates from healthy cats were infectious following oronasal infection and shed at high levels in feces without causing disease, as expected for FECVs. Only one in three cats shed FECV in the feces following i.p. infection, indicating that FECVs can replicate systemically, but with difficulty. FIPVs having a mutated 3c were not shed in the feces following either oronasal or i.p. inoculation, while FIPVs with intact 3c genes were shed in the feces following oronasal but not i.p. inoculation. Therefore, an intact 3c appears to be essential for intestinal replication. Although FIPVs with an intact 3c were shed in the feces following oronasal inoculation, fecal virus from these cats was not infectious for other cats. Attempts to identify potential FIP mutations in the 3a, 3b, E, and M were negative. However, the 3c gene of FIPVs, even though appearing intact, contained many more non-synonymous amino acid changes in the 3' one-third of the 3c protein than FECVs. An attempt to trace FIPV isolates back to enteric strains existing in the shelter was only partially successful due to the large region over which shelter cats and kittens originated, housing conditions prior to acquisition, and rapid movement through the shelter. No evidence could be found to support a recent theory that FIPVs and FECVs are genetically distinct.


Subject(s)
Coronavirus, Feline/isolation & purification , Coronavirus, Feline/pathogenicity , Feline Infectious Peritonitis/virology , Intestines/virology , Viral Proteins/metabolism , Viral Tropism , Amino Acid Sequence , Animals , Cats , Coronavirus, Feline/classification , Coronavirus, Feline/physiology , Feces/virology , Molecular Sequence Data , Pets/virology , Phylogeny , Sequence Alignment , Specific Pathogen-Free Organisms , Viral Proteins/chemistry , Viral Proteins/genetics , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...