Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 12(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38927357

ABSTRACT

Oxidative stress, arising from an imbalance between reactive oxygen species (ROS) and antioxidants, contributes significantly to oral cancer such as oral squamous cell carcinoma (OSCC) initiation, promotion, and progression. ROS, generated both internally and externally, induce cellular damage including DNA mutations and lipid peroxidation, fostering oncogene activation and carcinogenesis. The objective of this review was to cover and analyze the interplay between ROS and antioxidants, influencing the key processes such as cell proliferation, apoptosis, and angiogenesis, shaping the trajectory of OSCC development. Despite the promise of antioxidants to halt cancer progression and mitigate oxidative damage, their therapeutic efficacy remains debated. The conducted literature search highlighted potential biomarkers that indicate levels of oxidative stress, showing promise for the early detection and monitoring of OSCC. Furthermore, melatonin has emerged as a promising adjunct therapy for OSCC, exerting antioxidant and oncostatic effects by modulating tumor-associated neutrophils and inhibiting cancer cell survival and migration. In addition, this review aims to shed light on developing personalized therapeutic strategies for patients with OSCC such as melatonin therapy, which will be discussed. Research is needed to elucidate the underlying mechanisms and clinical implications of oxidative stress modulation in the context of oral cancer.

2.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674056

ABSTRACT

Functional neurological disorder (FND), formerly called conversion disorder, is a condition characterized by neurological symptoms that lack an identifiable organic purpose. These signs, which can consist of motor, sensory, or cognitive disturbances, are not deliberately produced and often vary in severity. Its diagnosis is predicated on clinical evaluation and the exclusion of other medical or psychiatric situations. Its treatment typically involves a multidisciplinary technique addressing each of the neurological symptoms and underlying psychological factors via a mixture of medical management, psychotherapy, and supportive interventions. Recent advances in neuroimaging and a deeper exploration of its epidemiology, pathophysiology, and clinical presentation have shed new light on this disorder. This paper synthesizes the current knowledge on FND, focusing on its epidemiology and underlying mechanisms, neuroimaging insights, and the differentiation of FND from feigning or malingering. This review highlights the phenotypic heterogeneity of FND and the diagnostic challenges it presents. It also discusses the significant role of neuroimaging in unraveling the complex neural underpinnings of FND and its potential in predicting treatment response. This paper underscores the importance of a nuanced understanding of FND in informing clinical practice and guiding future research. With advancements in neuroimaging techniques and growing recognition of the disorder's multifaceted nature, the paper suggests a promising trajectory toward more effective, personalized treatment strategies and a better overall understanding of the disorder.


Subject(s)
Conversion Disorder , Neuroimaging , Humans , Neuroimaging/methods , Conversion Disorder/diagnosis , Conversion Disorder/therapy , Conversion Disorder/physiopathology , Nervous System Diseases/diagnosis , Nervous System Diseases/therapy , Brain/diagnostic imaging , Brain/physiopathology , Brain/pathology
3.
Biomedicines ; 12(2)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38398011

ABSTRACT

This paper presents an in-depth exploration of Post-Traumatic Epilepsy (PTE), a complex neurological disorder following traumatic brain injury (TBI), characterized by recurrent, unprovoked seizures. With TBI being a global health concern, understanding PTE is crucial for effective diagnosis, management, and prognosis. This study aims to provide a comprehensive overview of the epidemiology, risk factors, and emerging biomarkers of PTE, thereby informing clinical practice and guiding future research. The epidemiological aspect of the study reveals PTE as a significant contributor to acquired epilepsies, with varying incidence influenced by injury severity, age, and intracranial pathologies. The paper delves into the multifactorial nature of PTE risk factors, encompassing clinical, demographic, and genetic elements. Key insights include the association of injury severity, intracranial hemorrhages, and early seizures with increased PTE risk, and the roles of age, gender, and genetic predispositions. Advancements in neuroimaging, electroencephalography, and molecular biology are presented, highlighting their roles in identifying potential PTE biomarkers. These biomarkers, ranging from radiological signs to electroencephalography EEG patterns and molecular indicators, hold promise for enhancing PTE pathogenesis understanding, early diagnosis, and therapeutic guidance. The paper also discusses the critical roles of astrocytes and microglia in PTE, emphasizing the significance of neuroinflammation in PTE development. The insights from this review suggest potential therapeutic targets in neuroinflammation pathways. In conclusion, this paper synthesizes current knowledge in the field, emphasizing the need for continued research and a multidisciplinary approach to effectively manage PTE. Future research directions include longitudinal studies for a better understanding of TBI and PTE outcomes, and the development of targeted interventions based on individualized risk profiles. This research contributes significantly to the broader understanding of epilepsy and TBI.

4.
Brain Sci ; 13(11)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38002521

ABSTRACT

Depression presents a significant global health burden, necessitating the search for effective and safe treatments. This investigation aims to assess the antidepressant effect of the hydroethanolic extract of Anacardium occidentale (AO) on depression-related behaviors in rats. The depression model involved 42 days of unpredictable chronic mild stress (UCMS) exposure and was assessed using the sucrose preference and the forced swimming (FST) test. Additionally, memory-related aspects were examined using the tests Y-maze and Morris water maze (MWM), following 21 days of treatment with varying doses of the AO extract (150, 300, and 450 mg/kg) and Imipramine (20 mg/kg), commencing on day 21. The monoamines (norepinephrine, serotonin, and dopamine), oxidative stress markers (MDA and SOD), and cytokines levels (IL-1ß, IL-6, and TNF-α) within the brain were evaluated. Additionally, the concentration of blood corticosterone was measured. Treatment with AO significantly alleviated UCMS-induced and depressive-like behaviors in rats. This was evidenced by the ability of the extract to prevent further decreases in body mass, increase sucrose consumption, reduce immobility time in the test Forced Swimming, improve cognitive performance in both tests Y-maze and the Morris water maze by increasing the target quadrant dwelling time and spontaneous alternation percentage, and promote faster feeding behavior in the novelty-suppressed feeding test. It also decreased pro-inflammatory cytokines, corticosterone, and MDA levels, and increased monoamine levels and SOD activity. HPLC-MS analysis revealed the presence of triterpenoid compounds (ursolic acid, oleanolic acid, and lupane) and polyphenols (catechin quercetin and kaempferol). These results evidenced the antidepressant effects of the AO, which might involve corticosterone and monoaminergic regulation as antioxidant and anti-inflammatory activities.

5.
Int J Mol Sci ; 24(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37047362

ABSTRACT

Ischemic strokes occur when the blood supply to a part of the brain is interrupted or reduced due to arterial blockage, and it often leads to damage to brain cells or death. According to a myriad of experimental studies, oxidative stress is an important pathophysiological mechanism of ischemic stroke. In this narrative review, we aimed to identify how the alterations of oxidative stress biomarkers could suggest a severity-reflecting diagnosis of ischemic stroke and how these interactions may provide new molecular targets for neuroprotective therapies. We performed an eligibility criteria-based search on three main scientific databases. We found that patients with acute ischemic stroke are characterized by increased oxidative stress markers levels, such as the total antioxidant capacity, F2-isoprostanes, hydroxynonenal, total and perchloric acid oxygen radical absorbance capacity (ORACTOT and ORACPCA), malondialdehyde (MDA), myeloperoxidase, and urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine. Thus, acute ischemic stroke is causing significant oxidative stress and associated molecular and cellular damage. The assessment of these molecular markers could be useful in diagnosing ischemic stroke, finding its causes, predicting its severity and outcomes, reducing its impact on the cellular structures of the brain, and guiding preventive treatment towards antioxidant-based therapy as novel therapeutic alternatives.


Subject(s)
Ischemic Stroke , Stroke , Humans , Antioxidants/therapeutic use , Antioxidants/metabolism , Ischemic Stroke/diagnosis , Ischemic Stroke/drug therapy , Ischemic Stroke/prevention & control , Stroke/diagnosis , Stroke/drug therapy , Oxidative Stress/physiology , Biomarkers
6.
Life (Basel) ; 14(1)2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38255648

ABSTRACT

This meta-analysis aimed to assess the association between mild traumatic brain injury (mTBI) and the risk of developing Parkinsonism. A systematic literature review was conducted using PubMed, Embase, and Cochrane Library databases. Studies were eligible if they reported on the association between MTBI and Parkinsonism. Pooled odds ratios (ORs) were calculated using a random-effects model. Publication bias was assessed using Egger's and Begg's tests. A total of 18 studies were included in this meta-analysis, with 1,484,752 participants. The overall OR for Parkinsonism in individuals with a history of mTBI was 1.637 (95% CI, 1.203-2.230; p = 0.01), indicating a significant association. The OR for Parkinson's disease (PD) specifically was 1.717 (95% CI, 1.206-2.447; p = 0.01). However, insufficient data on tics and akathisia limited a meta-analysis. There was no evidence of publication bias according to Egger's (p = 0.8107) and Begg's (p = 0.4717) tests. This meta-analysis provides evidence that mTBI is a significant risk factor for Parkinsonism, particularly PD. However, the findings should be interpreted with caution due to the heterogeneity among the studies included and the study's limitations. Further research is needed to confirm these findings and to investigate the underlying mechanisms of the mTBI-Parkinsonism association.

7.
Molecules ; 27(19)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36235013

ABSTRACT

Taraxacum officinale (TO) has been historically used for medicinal purposes due to its biological activity against specific disorders. To investigate the antioxidant and the antiproliferativepotential of TO essential oil in vitro and in vivo, the chemical composition of the essential oil was analyzed by GC-MS. The in vivo antioxidant capacity was assessed on liver and kidney homogenate samples from mice subjected to acetaminophen-induced oxidative stress and treated with TO essential oil (600 and 12,000 mg/kg BW) for 14 days. The in vitro scavenging activity was assayed using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and the reducing power methods. The cytotoxic effects against the HeLa cancer cell line were analyzed. The GC-MS analysis showed the presence of 34 compounds, 8 of which were identified as major constituents. The TO essential oil protected mice's liver and kidneys from acetaminophen-induced oxidative stress by enhancing antioxidant enzymes (catalase, superoxide dismutase, and glutathione) and lowering malondialdehyde levels. In vitro, the TO essential oil demonstrated low scavenging activity against DPPH (IC50 = 2.00 ± 0.05 mg/mL) and modest reducing power (EC50 = 0.963 ± 0.006 mg/mL). The growth of the HeLa cells was also reduced by the TO essential oil with an inhibition rate of 83.58% at 95 µg/mL. Current results reveal significant antioxidant and antiproliferative effects in a dose-dependent manner and suggest that Taraxacum officinale essential oil could be useful in formulations for cancer therapy.


Subject(s)
Oils, Volatile , Taraxacum , Acetaminophen , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Biphenyl Compounds , Catalase/metabolism , Glutathione/metabolism , HeLa Cells , Humans , Malondialdehyde , Mice , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Superoxide Dismutase/metabolism , Taraxacum/chemistry
8.
Antioxidants (Basel) ; 11(2)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35204230

ABSTRACT

The present study evaluated the chemical composition and the in vitro and in vivo antioxidant potential of Ammi visnaga L. essential oil to provide a scientific basis for the use of this plant in the traditional pharmacopoeia. Gas chromatography-mass spectrometry was used to identify the volatile constituents present of the oil. The in vitro antioxidant capacity was evaluated by the DPPH and the reducing power assays. For the in vivo tests, oral administration of Ammi visnaga L. oil (600 and 1200 mg/kg body weight) was performed in Swiss albino mice treated with acetaminophen (400 mg/kg). The toxic effect of acetaminophen and the action of the essential oil were measured by determining the levels of lipid peroxidation and antioxidant enzymes in liver and kidneys homogenates. The major components identified were butanoic acid, 2-methyl-, pentyl ester, (Z)-ß-ocimene, D-limonene, linalool, pulegone and lavandulyl-butyrate. The in vitro DPPH and reducing power assays showed moderate to low free radical scavenging activity and the antioxidant power was positively correlated with the polyphenols' concentration. In vivo, the Ammi visnaga L. essential oil showed a high antioxidant capacity at both concentrations (600 and 1200 mg/kg), effectively increasing the levels of reduced glutathione, superoxide dismutase, and catalase and significantly reducing the lipid peroxidation. The results obtained from this study suggest that Ammi visnaga L. could represent a source of molecules with antioxidant potential in the prevention of free radical-related diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...