Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Nature ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862027

ABSTRACT

The recent acceleration of commercial, private, and multi-national spaceflight has created an unprecedented level of activity in low Earth orbit (LEO), concomitant with the highest-ever number of crewed missions entering space and preparations for exploration-class (>1 year) missions. Such rapid advancement into space from many new companies, countries, and space-related entities has enabled a"Second Space Age." This new era is also poised to leverage, for the first time, modern tools and methods of molecular biology and precision medicine, thus enabling precision aerospace medicine for the crews. The applications of these biomedical technologies and algorithms are diverse, encompassing multi-omic, single-cell, and spatial biology tools to investigate human and microbial responses to spaceflight. Additionally, they extend to the development of new imaging techniques, real-time cognitive assessments, physiological monitoring, and personalized risk profiles tailored for astronauts. Furthermore, these technologies enable advancements in pharmacogenomics (PGx), as well as the identification of novel spaceflight biomarkers and the development of corresponding countermeasures. In this review, we highlight some of the recent biomedical research from the National Aeronautics and Space Administration (NASA), Japan Aerospace Exploration Agency (JAXA), European Space Agency (ESA), and other space agencies, and also detail the commercial spaceflight sector's (e.g. SpaceX, Blue Origin, Axiom, Sierra Space) entrance into aerospace medicine and space biology, the first aerospace medicine biobank, and the myriad upcoming missions that will utilize these tools to ensure a permanent human presence beyond LEO, venturing out to other planets and moons.

2.
NPJ Microgravity ; 10(1): 62, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862543

ABSTRACT

Skeletal muscles overcome terrestrial, gravitational loading by producing tensile forces that produce movement through joint rotation. Conversely, the microgravity of spaceflight reduces tensile loads in working skeletal muscles, causing an adaptive muscle atrophy. Unfortunately, the design of stable, physiological bioreactors to model skeletal muscle tensile loading during spaceflight experiments remains challenging. Here, we tested a bioreactor that uses initiation and cessation of cyclic, tensile strain to induce hypertrophy and atrophy, respectively, in murine lineage (C2C12) skeletal muscle myotubes. Uniaxial cyclic stretch of myotubes was conducted using a StrexCell® (STB-1400) stepper motor system (0.75 Hz, 12% strain, 60 min day^-1). Myotube groups were assigned as follows: (a) quiescent over 2- or (b) 5-day (no stretch), (c) experienced 2-days (2dHY) or (d) 5-days (5dHY) of cyclic stretch, or (e) 2-days of cyclic stretch followed by a 3-day cessation of stretch (3dAT). Using ß-sarcoglycan as a sarcolemmal marker, mean myotube diameter increased significantly following 2dAT (51%) and 5dAT (94%) vs. matched controls. The hypertrophic, anabolic markers talin and Akt phosphorylation (Thr308) were elevated with 2dHY but not in 3dAT myotubes. Inflammatory, catabolic markers IL-1ß, IL6, and NF-kappaB p65 subunit were significantly higher in the 3dAT group vs. all other groups. The ratio of phosphorylated FoxO3a/total FoxO3a was significantly lower in 3dAT than in the 2dHY group, consistent with elevated catabolic signaling during unloading. In summary, we demonstrated proof-of-concept for a spaceflight research bioreactor, using uniaxial cyclic stretch to produce myotube hypertrophy with increased tensile loading, and myotube atrophy with subsequent cessation of stretch.

4.
Int Immunopharmacol ; 124(Pt A): 110945, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37716161

ABSTRACT

Chemotherapy-induced cognitive impairment (CICI) is a general term describing cognitive dysfunction during/after treatment with chemotherapeutic agents. CICI represents a significant medical problem due to its increasing prevalence with the lack of robust therapeutic approaches. This study aimed at investigating the effects of chronic treatment with amisulpride (5 mg/kg/day) in the management of 5-fluorouracil (5-FU)-induced cognitive deficits in Wistar rats. Rats received 5 intraperitoneal injections of 5-FU (25 mg/kg every 3 days). 5-FU treatment induced impairments in spatial learning (reduction in object location discrimination ratio) and non-spatial learning (reduction in novel object recognition discrimination ratio). Moreover, 5-FU induced a decrease in the activity of the Wnt/GSK-3ß/ß-catenin pathway with a decrease in brain-derived neurotrophic factor (BDNF) level in the hippocampus. These changes were associated with an increase in the expression of the pro-inflammatory cytokines; tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß), in hippocampal tissue sections accompanied by a decrease in the number of Ki-67 positive cells (indicating a decrease in proliferative capacity), a decrease in the Nissl's granules optical density (denoting neurodegeneration), a decrease in the number of viable intact neurons with an increase in the expression of ß-amyloid and caspase-3. Amisulpride enhanced Wnt/GSK-3ß/ß-catenin signaling, increased BDNF levels, and abrogated 5-FU-induced neuroinflammation, apoptosis, ß-amyloid accumulation, and neurodegenerative changes with an improvement of cognitive performance. This study draws attention to the pro-cognitive effects of amisulpride in 5-FU-exposed rats that could be attributed to enhancing hippocampal Wnt/GSK-3ß/ß-catenin signaling pathway, and this could offer a promising therapeutic option for subjects with CICI.


Subject(s)
Brain-Derived Neurotrophic Factor , Cognitive Dysfunction , Humans , Rats , Animals , Rats, Wistar , Glycogen Synthase Kinase 3 beta/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Amisulpride/pharmacology , Fluorouracil/pharmacology , beta Catenin/metabolism , Wnt Signaling Pathway , Hippocampus , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Cognition
5.
Int J Mol Sci ; 24(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37446313

ABSTRACT

Mechanical unloading during microgravity causes skeletal muscle atrophy and impairs mitochondrial energetics. The elevated production of reactive oxygen species (ROS) by mitochondria and Nox2, coupled with impairment of stress protection (e.g., SIRT1, antioxidant enzymes), contribute to atrophy. We tested the hypothesis that the SIRT1 activator, SRT2104 would rescue unloading-induced mitochondrial dysfunction. Mitochondrial function in rat gastrocnemius and soleus muscles were evaluated under three conditions (10 days): ambulatory control (CON), hindlimb unloaded (HU), and hindlimb-unloaded-treated with SRT2104 (SIRT). Oxidative phosphorylation, electron transfer capacities, H2O2 production, and oxidative and antioxidant enzymes were quantified using high-resolution respirometry and colorimetry. In the gastrocnemius, (1) integrative (per mg tissue) proton LEAK was lesser in SIRT than in HU or CON; (2) intrinsic (relative to citrate synthase) maximal noncoupled electron transfer capacity (ECI+II) was lesser, while complex I-supported oxidative phosphorylation to ECI+II was greater in HU than CON; (3) the contribution of LEAK to ECI+II was greatest, but cytochrome c oxidase activity was lowest in HU. In both muscles, H2O2 production and concentration was greatest in SIRT, as was gastrocnemius superoxide dismutase activity. In the soleus, H2O2 concentration was greater in HU compared to CON. These results indicate that SRT2104 preserves mitochondrial function in unloaded skeletal muscle, suggesting its potential to support healthy muscle cells in microgravity by promoting necessary energy production in mitochondria.


Subject(s)
Antioxidants , Sirtuin 1 , Rats , Animals , Antioxidants/pharmacology , Sirtuin 1/metabolism , Hydrogen Peroxide/metabolism , Oxidative Stress , Muscle, Skeletal/metabolism , Oxidation-Reduction , Muscular Atrophy/metabolism , Mitochondria/metabolism , Hindlimb/metabolism , Biology
6.
Int J Mol Sci ; 24(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36983029

ABSTRACT

During space missions that travel beyond the cocoon of the Earth's magnetosphere, astronauts are subjected to the microgravity and radiation stressors of outer space [...].


Subject(s)
Cosmic Radiation , Space Flight , Weightlessness , Humans , Astronauts , Extraterrestrial Environment , Signal Transduction , Cosmic Radiation/adverse effects
8.
Cancer Manag Res ; 14: 821-842, 2022.
Article in English | MEDLINE | ID: mdl-35250310

ABSTRACT

PURPOSE: Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide and the second cause of cancer related mortality. Treatment options for patients with metastatic CRC (mCRC) expanded during the last two decades, with introduction of new chemotherapeutic and targeted agents. Egypt is a lower middle-income country; Egyptian health care system is fragmented with wide diversity in drug availability and reimbursement policies across different health care providing facilities. We report the results of consensus recommendations for treatment of patients with metastatic colorectal cancer developed by Egyptian Foundation of Medical Sciences (EFMS), aiming to harmonize clinical practice through structured expert consensus-based recommendations consistent with the national status. EFMS recommendations could be utilized in other countries with similar economic status. METHODS: EFMS recommendations were developed using a modified Delphi process, with three rounds of voting till the final recommendations were approved. A non-systematic review of literature was conducted before generating the provisional statements. Content experts were asked to vote on some recommendations in two different resource groups (restricted resources and non-restricted resources). External review board of experts from a low income and lower-middle countries voted on the applicability of EFMS recommendations in their countries. RESULTS: The current recommendations highlighted the discrepancy in health care between restricted and non-restricted resources with expected survival loss and quality of life deterioration. Access to targeted agents in first line is very limited in governmental institutions, and no access to agents approved for third line in patients who failed oxaliplatin and irinotecan containing regimens for patients treated in restricted resource settings. CONCLUSION: Management of mCRC in developing countries is a challenge. The currently available resource-stratified guidelines developed by international cancer societies represent a valuable decision-making tool, adaptation to national status in each country based on healthcare system status is required.

10.
Methods Mol Biol ; 2368: 241-265, 2022.
Article in English | MEDLINE | ID: mdl-34647260

ABSTRACT

Simulated microgravity and partial gravity research on Earth is a necessary complement to space research in real microgravity due to limitations of access to spaceflight. However, the use of ground-based facilities for reduced gravity simulation is far from simple. Microgravity simulation usually results in the need to consider secondary effects that appear in the generation of altered gravity. These secondary effects may interfere with gravity alteration in the changes observed in the biological processes under study. In addition to microgravity simulation, ground-based facilities are also capable of generating hypergravity or fractional gravity conditions whose effects on biological systems are worth being tested and compared with the results of microgravity exposure. Multiple technologies (2D clinorotation, random positioning machines, magnetic levitators, or centrifuges) and experimental hardware (different containers and substrates for seedlings or cell cultures) are available for these studies. Experimental requirements should be collectively and carefully considered in defining the optimal experimental design, taking into account that some environmental parameters, or life-support conditions, could be difficult to be provided in certain facilities. Using simulation facilities will allow us to anticipate, modify, or redefine the findings provided by the scarce available spaceflight opportunities.


Subject(s)
Space Flight , Weightlessness , Hypergravity , Seedlings , Weightlessness Simulation
11.
Cancer Chemother Pharmacol ; 88(6): 931-939, 2021 12.
Article in English | MEDLINE | ID: mdl-34468794

ABSTRACT

PURPOSE: Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting side effect of chemotherapy. Several trials have evaluated the protective effect of vitamin E in preventing CIPN with controversial results. This study aims to outline the role of vitamin E in preventing CIPN. METHODS: A prospective phase II, open-label randomized controlled study was conducted in patients receiving taxane-based chemotherapy in Ain Shams University Hospitals, using vitamin E at a dose of 400 mg twice daily. The primary endpoint was the incidence of grade ≥ 2 sensory neuropathy according to CTCAE v 5.0 in each treatment arm. Secondary endpoints include time to onset and the duration of grade ≥ 2 sensory neuropathy. RESULTS: A total of 140 patients were randomized between the control and vitamin E arms. There was no difference in the incidence of grade ≥ 2 sensory neuropathy between the two arms (25.7% in each arm; P = 1.0), as well as the time to onset of neuropathy (P = 0.24). However, there was a statistically significant difference between the 2 arms as regards the duration of neuropathy. The median duration was 12.5 vs. 5 weeks in the control and vitamin E arms respectively (P = 0.01). CONCLUSION: Our study did not demonstrate a protective role of vitamin E in decreasing the incidence of CIPN in patients receiving taxane-based chemotherapy. However, the recovery from CIPN was much better as compared to the control arm, which may indicate a role for vitamin E in decreasing the duration and severity of CIPN.


Subject(s)
Antineoplastic Agents/adverse effects , Antioxidants/therapeutic use , Bridged-Ring Compounds/adverse effects , Neoplasms/drug therapy , Peripheral Nervous System Diseases/prevention & control , Taxoids/adverse effects , Vitamin E/therapeutic use , Case-Control Studies , Female , Follow-Up Studies , Humans , Male , Middle Aged , Neoplasms/pathology , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/pathology , Prognosis , Prospective Studies
12.
Biomolecules ; 11(7)2021 07 09.
Article in English | MEDLINE | ID: mdl-34356629

ABSTRACT

Soil salinity is the major limiting factor restricting plant growth and development. Little is known about the comparative and combined effects of gibberellic acid (GA3) seed priming and foliar application on maize under salt stress. The current study determined the impact of different application methods of GA3 on morpho-physiological, biochemical and molecular responses of maize seedlings under three salinity stress treatments (no salinity, moderate salinity-6 dS m-1, and severe salinity-12 dS m-1). The GA3 treatments consisted of control, hydro-priming (HP), water foliar spray (WFS), HP + WFS, seed priming with GA3 (GA3P, 100 mg L-1), foliar spray with GA3 (GA3FS, 100ppm) and GA3P + GA3FS. Salt stress particularly at 12 dS m-1 reduced the length of shoots and roots, fresh and dry weights, chlorophyll, and carotenoid contents, K+ ion accumulation and activities of antioxidant enzymes, while enhanced the oxidative damage and accumulation of the Na+ ion in maize plants. Nevertheless, the application of GA3 improved maize growth, reduced oxidative stress, and increased the antioxidant enzymes activities, antioxidant genes expression, and K+ ion concentration under salt stress. Compared with control, the GA3P + GA3FS recorded the highest increase in roots and shoots length (19-37%), roots fresh and dry weights (31-43%), shoots fresh and dry weights (31-47%), chlorophyll content (21-70%), antioxidant enzymes activities (73.03-150.74%), total soluble protein (13.05%), K+ concentration (13-23%) and antioxidants genes expression levels under different salinity levels. This treatment also reduced the H2O2 content, and Na+ ion concentration. These results indicated that GA3P + GA3FS could be used as an effective tool for improving the maize growth and development, and reducing the oxidative stress in salt-contaminated soils.


Subject(s)
Antioxidants/metabolism , Gene Expression Regulation, Plant/drug effects , Gibberellins/pharmacology , Salt Tolerance/drug effects , Zea mays , Salt Tolerance/genetics , Zea mays/genetics , Zea mays/growth & development
13.
Int J Mol Sci ; 22(6)2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33806917

ABSTRACT

Insufficient stress response and elevated oxidative stress can contribute to skeletal muscle atrophy during mechanical unloading (e.g., spaceflight and bedrest). Perturbations in heat shock proteins (e.g., HSP70), antioxidant enzymes, and sarcolemmal neuronal nitric oxidase synthase (nNOS) have been linked to unloading-induced atrophy. We recently discovered that the sarcolemmal NADPH oxidase-2 complex (Nox2) is elevated during unloading, downstream of angiotensin II receptor 1, and concomitant with atrophy. Here, we hypothesized that peptidyl inhibition of Nox2 would attenuate disruption of HSP70, MnSOD, and sarcolemmal nNOS during unloading, and thus muscle fiber atrophy. F344 rats were divided into control (CON), hindlimb unloaded (HU), and hindlimb unloaded +7.5 mg/kg/day gp91ds-tat (HUG) groups. Unloading-induced elevation of the Nox2 subunit p67phox-positive staining was mitigated by gp91ds-tat. HSP70 protein abundance was significantly lower in HU muscles, but not HUG. MnSOD decreased with unloading; however, MnSOD was not rescued by gp91ds-tat. In contrast, Nox2 inhibition protected against unloading suppression of the antioxidant transcription factor Nrf2. nNOS bioactivity was reduced by HU, an effect abrogated by Nox2 inhibition. Unloading-induced soleus fiber atrophy was significantly attenuated by gp91ds-tat. These data establish a causal role for Nox2 in unloading-induced muscle atrophy, linked to preservation of HSP70, Nrf2, and sarcolemmal nNOS.


Subject(s)
Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscular Atrophy/etiology , Muscular Atrophy/metabolism , NADPH Oxidase 2/antagonists & inhibitors , Stress, Physiological , Weightlessness/adverse effects , Animals , Biomarkers , HSP72 Heat-Shock Proteins/metabolism , Models, Biological , Multiprotein Complexes/metabolism , Nitric Oxide Synthase Type I/metabolism , Oxidative Stress , Protein Binding , Rats
14.
Indian J Pathol Microbiol ; 64(1): 28-37, 2021.
Article in English | MEDLINE | ID: mdl-33433406

ABSTRACT

CONTEXT: Tumor immune microenvironment (TIME) is heterogeneous and dynamic. It exerts bimodal pro and antitumor effects. Among the TIME contributors, TAMs and Tregs are condemned as cancer cells allies rather than enemies; however, such contribution is not universally equal in all tumors. AIMS: We aimed to explore and compare TAMs and Tregs in various breast cancers and link such findings to pathologic prognostic indices. SETTINGS AND DESIGN: This was a retrospective study. METHODS AND MATERIALS: Archival blocks of 108 breast cancers were immunohistochemically studied for CD163 and FOXP3 in tumor stroma (TS) and specialized DCIS periductal stroma. FOXP3 was additionally evaluated in tumor cells. CD163 and FOXP3 expressions were compared with different histopathological prognostic categories for statistical analysis. STATISTICAL ANALYSIS USED: Analysis of data was done using the Chi-Square test. RESULTS: Both CD163+ TAM and FOXP3+ Tregs. showed statistically significant association with high tumor grade, T stage, multifocality and hormone negativity. Synchronous expression was consistent for both markers in almost all compared parameters, dual high expression of both CD163 and FOXP3 yielded additional statistically significant association with lymphovascular invasion (LVI). Periductal stromal CD163 and FOXP3 high expression showed statistically significant association with DCIS. FOXP3 tumor cells expression was similar to TS FOXP3 but additionally showed significant association with LVI and N stage; moreover, Her-2 over-expressing breast cancer was significantly associated with low FOXP3+ tumor cells. CONCLUSIONS: Breast cancer TS TAMs and Tregs. abundance reflects unfavorable prognosis in various breast cancers particularly hormone negative cancers.


Subject(s)
Antigens, CD/genetics , Antigens, Differentiation, Myelomonocytic/genetics , Breast Neoplasms/immunology , Forkhead Transcription Factors/genetics , Immunohistochemistry/standards , Receptors, Cell Surface/genetics , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment/immunology , Adult , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Breast/pathology , Breast Neoplasms/classification , Breast Neoplasms/pathology , Female , Forkhead Transcription Factors/metabolism , Humans , Immunohistochemistry/methods , Middle Aged , Neoplasm Staging , Prognosis , Receptors, Cell Surface/metabolism , Retrospective Studies , T-Lymphocytes, Regulatory/metabolism , Tumor Microenvironment/genetics
15.
Physiol Plant ; 172(2): 684-695, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33159351

ABSTRACT

Salinity and drought are the major abiotic stresses that disturb several aspects of maize plants growth at the cellular level, one of these aspects is cell cycle machinery. In our study, we dissected the molecular alterations and downstream effectors of salinity and drought stress on cell cycle regulation and chromatin remodeling. Effects of salinity and drought stress were determined on maize seedlings using 200 mM NaCl (induced salinity stress), and 250 mM mannitol (induced drought stress) treatments, then cell cycle progression and chromatin remodeling dynamics were investigated. Seedlings displayed severe growth defects, including inhibition of root growth. Interestingly, stress treatments induced cell cycle arrest in S-phase with extensive depletion of cyclins B1 and A1. Further investigation of gene expression profiles of cell cycle regulators showed the downregulation of the CDKA, CDKB, CYCA, and CYCB. These results reveal the direct link between salinity and drought stress and cell cycle deregulation leading to a low cell proliferation rate. Moreover, abiotic stress alters chromatin remodeling dynamic in a way that directs the cell cycle arrest. We observed low DNA methylation patterns accompanied by dynamic histone modifications that favor chromatin decondensation. Also, the high expression of DNA topoisomerase 2, 6 family was detected as consequence of DNA damage. In conclusion, in response to salinity and drought stress, maize seedlings exhibit modulation of cell cycle progression, resulting in the cell cycle arrest through chromatin remodeling.


Subject(s)
Cell Cycle , Chromatin , Droughts , Salinity , Zea mays/physiology , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Plants, Genetically Modified/physiology , Stress, Physiological , Zea mays/genetics
16.
Anticancer Agents Med Chem ; 20(8): 1028-1036, 2020.
Article in English | MEDLINE | ID: mdl-32324522

ABSTRACT

BACKGROUND: Rosin (Colophony) is a natural resin derived from species of the pine family Pinaceae. It has wide industrial applications including printing inks, photocopying paper, adhesives and varnishes, soap and soda. Rosin and its derivatives are employed as ingredients in various pharmaceutical products such as ointments and plasters. Rosin-based products contain allergens that may exert some occupational health problems such as asthma and contact dermatitis. OBJECTIVE: Our knowledge of the pharmaceutical and medicinal properties of rosin is limited. The current study aims at investigating the cytotoxic potential of Rosin-Derived Crude Methanolic Extract (RD-CME) and elucidation of its mode-of-action against breast cancer cells (MCF-7 and MDA-MB231). METHODS: Crude methanol extract was prepared from rosin. Its phenolic contents were analyzed by Reversed- Phase High-Performance Liquid Chromatography (RP-HPLC). Antioxidant activity was evaluated by DPPH radical-scavenging assay. Antiproliferation activity against MCF-7 and MDA-MB231 cancerous cells was investigated by MTT assay; its potency compared with doxorubicin as positive control and specificity were assessed compared to two non-cancerous cell lines (BJ-1 and MCF-12F). Selected apoptosis protein markers were assayed by western blotting. Cell cycle analysis was performed by Annexin V-FITC/PI FACS assay. RESULTS: RD-CME exhibited significant and selective cytotoxicity against the two tested breast cancer cells (MCF-7 and MDA-MB231) compared to normal cells as revealed by MTT assay. ELISA and western blotting indicated that the observed antiproliferative activity of RD-CME is mediated via the engagement of an intrinsic apoptosis signaling pathway, as judged by enhanced expression of key pro-apoptotic protein markers (p53, Bax and Casp 3) relative to vehicle solvent-treated MCF-7 control cells. CONCLUSION: To our knowledge, this is the first report to investigate the medicinal anticancer and antioxidant potential of crude methanolic extract derived from colophony rosin. We provided evidence that RD-CME exhibits strong antioxidant and anticancer effects. The observed cytotoxic activity against MCF-7 is proposed to take place via G2/M cell cycle arrest and apoptosis. Colophony resin has a great potential to join the arsenal of plantderived natural anticancer drugs. Further thorough investigation of the potential cytotoxicity of RD-CME against various cancerous cell lines is required to assess the spectrum and potency of its novel activity.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/pharmacology , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Methanol/chemistry , Resins, Plant/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Biphenyl Compounds/antagonists & inhibitors , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Gingiva/chemistry , Humans , Molecular Structure , Picrates/antagonists & inhibitors , Resins, Plant/chemistry , Resins, Plant/isolation & purification , Structure-Activity Relationship , Tumor Cells, Cultured
17.
Physiol Plant ; 169(4): 625-638, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32129889

ABSTRACT

Microgreens are rich functional crops with valuable nutritional elements that have health benefits when used as food supplements. Growth characterization, nutritional composition profile of 21 varieties representing five species of the Brassica genus as microgreens were assessed under light-emitting diodes (LEDs) conditions. Microgreens were grown under four different LEDs ratios (%); red:blue 80:20 and 20:80 (R80 :B20 and R20 :B80 ), or red:green:blue 70:10:20 and 20:10:70 (R70 :G10 :B20 and R20 :G10 :B70 ). Results indicated that supplemental lighting with green LEDs (R70 :G10 :B20 ) enhanced vegetative growth and morphology, while blue LEDs (R20 :B80 ) increased the mineral and vitamin contents. Interestingly, by linking the nutritional content with the growth yield to define the optimal LEDs setup, we found that the best lighting to promote the microgreen growth was the green LEDs combination (R70 :G10 :B20 ). Remarkably, under the green LEDs combination (R70 :G10 :B20 ) conditions, the microgreens of Kohlrabi purple, Cabbage red, Broccoli, Kale Tucsan, Komatsuna red, Tatsoi and Cabbage green, which can benefit human health in conditions with limited food, had the highest growth and nutritional content.


Subject(s)
Brassica , Humans , Light , Lighting , Nutritive Value , Plant Leaves
18.
Plant Sci ; 280: 12-17, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30823989

ABSTRACT

It is now well established that sphingoid Long Chain Bases (LCBs) are crucial mediators of programmed cell death. In plants, the mycotoxin fumonisin B1 (FB1) produced by the necrotrophic fungus Fusarium moniliforme disrupts the sphingolipid biosynthesis pathway by inhibiting the ceramide synthase leading to an increase in the amount of phytosphingosine (PHS) and dihydrosphingosine (DHS), the two major LCBs in Arabidopsis thaliana. To date, the signaling pathway involved in FB1-induced cell death remains largely uncharacterized. It is also well acknowledged that plant proteases such as papain-like cysteine protease are largely involved in plant immunity. Here, we show that the papain-like cysteine protease RD21 (responsive-to-desiccation-21) is activated in response to PHS and FB1 in Arabidopsis cultured cells and leaves, respectively. Using two allelic null mutants of RD21, and two different PCD bioassays, we demonstrate that the protein acts as a negative regulator of FB1-induced cell death in Arabidopsis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/metabolism , Cell Death/physiology , Papain/metabolism , Sphingolipids/metabolism , Arabidopsis Proteins/genetics , Cell Death/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Signal Transduction/genetics , Signal Transduction/physiology
19.
Genomics ; 111(6): 1956-1965, 2019 12.
Article in English | MEDLINE | ID: mdl-30641127

ABSTRACT

Plant cell proliferation is affected by microgravity during spaceflight, but involved molecular mechanisms, key for space agronomy goals, remain unclear. To investigate transcriptomic changes in cell cycle phases caused by simulated microgravity, an Arabidopsis immobilized synchronous suspension culture was incubated in a Random Positioning Machine. After simulation, a transcriptomic analysis was performed with two subpopulations of cells (G2/M and G1 phases enriched) and an asynchronous culture sample. Differential expression was found at cell proliferation, energy/redox and stress responses, plus unknown biological processes gene ontology groups. Overall expression inhibition was a common response to simulated microgravity, but differences peak at the G2/M phase and stress response components change dramatically from G2/M to the G1 subpopulation suggesting a differential adaptation response to simulated microgravity through the cell cycle. Cell cycle adaptation using both known stress mechanisms and unknown function genes may cope with reduced gravity as an evolutionary novel environment.


Subject(s)
Arabidopsis/cytology , Arabidopsis/genetics , Gene Expression Regulation, Plant , Weightlessness Simulation , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Cell Culture Techniques/methods , Cell Cycle/genetics , Gene Expression Profiling , Gene Ontology , Genome, Plant , Stress, Physiological/genetics
20.
Plant Cell Environ ; 42(2): 480-494, 2019 02.
Article in English | MEDLINE | ID: mdl-30105864

ABSTRACT

Zero gravity is an environmental challenge unknown to organisms throughout evolution on Earth. Nevertheless, plants are sensitive to altered gravity, as exemplified by changes in meristematic cell proliferation and growth. We found that synchronized Arabidopsis-cultured cells exposed to simulated microgravity showed a shortened cell cycle, caused by a shorter G2/M phase and a slightly longer G1 phase. The analysis of selected marker genes and proteins by quantitative polymerase chain reaction and flow cytometry in synchronic G1 and G2 subpopulations indicated changes in gene expression of core cell cycle regulators and chromatin-modifying factors, confirming that microgravity induced misregulation of G2/M and G1/S checkpoints and chromatin remodelling. Changes in chromatin-based regulation included higher DNA methylation and lower histone acetylation, increased chromatin condensation, and overall depletion of nuclear transcription. Estimation of ribosome biogenesis rate using nucleolar parameters and selected nucleolar genes and proteins indicated reduced nucleolar activity under simulated microgravity, especially at G2/M. These results expand our knowledge of how meristematic cells are affected by real and simulated microgravity. Counteracting this cellular stress is necessary for plant culture in space exploration.


Subject(s)
Arabidopsis/physiology , Cell Cycle/physiology , Cell Nucleus/physiology , Arabidopsis/cytology , Cells, Cultured , Flow Cytometry , Fluorescent Antibody Technique , Real-Time Polymerase Chain Reaction , Transcriptome , Weightlessness Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...