Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mycopathologia ; 186(2): 221-236, 2021 May.
Article in English | MEDLINE | ID: mdl-33550536

ABSTRACT

Candida albicans has been reported globally as the most widespread pathogenic species contributing candidiasis from superficial to systemic infections in immunocompromised individuals. Their metabolic adaptation depends on glyoxylate cycle to survive in nutrient-limited host. The long term usage of fungistatic drugs and the lack of cidal drugs frequently result in strains that could resist commonly used antifungals and display multidrug resistance (MDR). In search of potential therapeutic intervention and novel fungicidals, we have explored a plant alkaloids, namely arborinine and graveoline for its antifungal potential. Alkaloids belongs to Rutaceae family have been reported with numerous antimicrobial activities. In this study, we aimed to isolate and identify the antifungal active alkaloids of R. angustifolia and assess antifungal effect targeting C. albicans isocitrate lyase (ICL) gene which regulates isocitrate lyase, key enzyme in glyoxylate cycle contributing to the virulence potential of C. albicans. Alkaloids were extracted by bioassay guided isolation technique which further identified by TLC profile and compared with the standard through HPLC and NMR analysis. The antifungal activities of the extracted alkaloids were quantified by means of MIC (Minimum Inhibitory Concentration). The gene expression of the targeted gene upon treatment was analysed using RT-qPCR and western blot. Additionally, this study looked at the drug-likeness and potential toxicity effect of the active alkaloid compounds in silico analysis. Spectroscopic analysis showed that the isolated active alkaloids were characterized as acridone, furoquinoline, 4-quinolone known as arborinine and graveoline. Results showed that each compound significantly inhibited the growth of C. albicans at the dose of 250 to 500 µg/mL which confirm its antifungal activity. Each alkaloid was found to successfully downregulate the expression of both ICL1 gene CaIcl1 protein. Finally, ADMET analysis suggests a good prediction of chemical properties, namely absorption, distribution, metabolism, excretion and toxicity (ADMET) that will contribute in drug discovery and development later on.


Subject(s)
Alkaloids , Ruta , Acridines , Antifungal Agents , Candida albicans , Humans , Isocitrate Lyase , Methoxsalen/analogs & derivatives , Microbial Sensitivity Tests
2.
Med Mycol ; 59(2): 115-125, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-32944760

ABSTRACT

Candida albicans is a commensal yeast commonly found on the skin and in the body. However, in immunocompromised individuals, the fungi could cause local and systemic infections. The carbon source available plays an important role in the establishment of C. albicans infections. The fungi's ability to assimilate a variety of carbon sources plays a vital role in its colonization, and by extension, its fitness and pathogenicity, as it often inhabits niches that are glucose-limited but rich in alternative carbon sources. A difference in carbon sources affect the growth and mating of C. albicans, which contributes to its pathogenicity as proliferation helps the fungi colonize its environment. The carbon source also affects its metabolism and signaling pathways, which are integral parts of the fungi's fitness and pathogenicity. As a big percentage of the carbon assimilated by C. albicans goes to cell wall biogenesis, the availability of different carbon sources will result in cell walls with variations in rigidity, adhesion, and surface hydrophobicity. In addition to the biofilm formation of the fungi, the carbon source also influences whether the fungi grow in yeast- or mycelial-form. Both forms play different roles in C. albicans's infection process. A better understanding of the role of the carbon sources in C. albicans's pathogenicity would contribute to more effective treatment solutions for fungal infections.


Subject(s)
Candida albicans/metabolism , Candida albicans/pathogenicity , Carbon/metabolism , Signal Transduction , Animals , Candida albicans/genetics , Candida albicans/growth & development , Candidiasis/drug therapy , Candidiasis/microbiology , Carbon/classification , Fungal Proteins/metabolism , Glucose/metabolism , Humans , Mice , Virulence
3.
J Sci Food Agric ; 98(3): 1197-1207, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28746729

ABSTRACT

BACKGROUND: Green synthesis of silver nanoparticles (AgNPs) has become widely practiced worldwide. In this study, AgNPs were synthesized using a hot-water extract of the edible mushroom Pleurotus sajor-caju. The product, PSC-AgNPs, was characterized by using UV-visible spectra, dynamic light scattering analysis, transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectrometry. To assess its antifungal activity against Candida albicans, gene transcription and protein expression analyses were conducted for CaICL1 and its product, ICL, using real-time quantitative polymerase chain reaction and western blot, respectively. RESULTS: PSC-AgNPs with an average particle size of 11.68 nm inhibited the growth of the pathogenic yeast C. albicans. Values for minimum inhibitory concentration and minimum fungicidal concentration were 250 and 500 mg L-1 , respectively. TEM images revealed that the average particle size of PSC-AgNPs was 16.8 nm, with the values for zeta potential and the polydispersity index being -8.54 mV and 0.137, respectively. XRD and FTIR spectra showed PSC-AgNPs to have a face-centered cubic crystalline structure. The polysaccharides and amino acid residues present in P. sajor-caju extract were found to be involved in reducing Ag+ to AgNP. Both CaICL1 transcription and ICL protein expression were found to be suppressed in the cells treated with PSC-AgNPs as compared with the control. CONCLUSION: Our PSC-AgNP preparation makes for a promising antifungal agent that can downregulate isocitrate lyase. © 2017 Society of Chemical Industry.


Subject(s)
Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Candida albicans/drug effects , Pleurotus/metabolism , Silver/metabolism , Silver/pharmacology , Antifungal Agents/chemistry , Candida albicans/growth & development , Green Chemistry Technology , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Microscopy, Electron, Transmission , Particle Size , Plant Extracts/chemistry , Plant Extracts/metabolism , Pleurotus/chemistry , Silver/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...