Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Molecules ; 29(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38893388

ABSTRACT

Drilling through shale formations can be expensive and time-consuming due to the instability of the wellbore. Further, there is a need to develop inhibitors that are environmentally friendly. Our study discovered a cost-effective solution to this problem using Gum Arabic (ArG). We evaluated the inhibition potential of an ArG clay swelling inhibitor and fluid loss controller in water-based mud (WBM) by conducting a linear swelling test, capillary suction timer test, and zeta potential, fluid loss, and rheology tests. Our results displayed a significant reduction in linear swelling of bentonite clay (Na-Ben) by up to 36.1% at a concentration of 1.0 wt. % ArG. The capillary suction timer (CST) showed that capillary suction time also increased with the increase in the concentration of ArG, which indicates the fluid-loss-controlling potential of ArG. Adding ArG to the drilling mud prominently decreased fluid loss by up to 50%. Further, ArG reduced the shear stresses of the base mud, showing its inhibition and friction-reducing effect. These findings suggest that ArG is a strong candidate for an alternate green swelling inhibitor and fluid loss controller in WBM. Introducing this new green additive could significantly reduce non-productive time and costs associated with wellbore instability while drilling. Further, a dynamic linear swelling model, based on machine learning (ML), was created to forecast the linear swelling capacity of clay samples treated with ArG. The ML model proposed demonstrates exceptional accuracy (R2 score = 0.998 on testing) in predicting the swelling properties of ArG in drilling mud.

2.
ACS Omega ; 9(18): 20397-20409, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38737021

ABSTRACT

Rheological models are usually used to predict foamed fluid viscosity; however, obtaining the model constants under various conditions is challenging. Hence, this paper investigated the effect of different variables on foam rheology, such as shear rate, temperature, pressure, surfactant types, gas phase, and salinity, using a high-pressure high-temperature foam rheometer. Power-law, Bingham plastic, and Casson fluid models fit the experimental data well. Therefore, the data were fed to different machine learning techniques to evaluate the rheological model constants with different features. In this study, seven different machine learning techniques have been applied to predict the rheological models' constants, including decision tree, random forest, XGBoost (XGB), adaptive gradient boosting, gradient boosting, support vector regression, and voting regression. We evaluated the performance of our machine learning models using the coefficient of determination (R2), cross-plots, root-mean-square error, and average absolute percentage error. Based on the prediction outcomes, the XGB model outperformed the other ML models. The XGB model exhibited remarkably low error rates, achieving a prediction accuracy of 95% under ideal conditions. Furthermore, our prediction results demonstrated that the Casson model accurately captured the rheological behavior of the foam. Additionally, we used Pearson's correlation coefficients to assess the significance of various properties in relation to the constants within the rheological models. It is evident that the XGB model makes predictions with nearly all features contributing significantly, while other machine learning techniques rely more heavily on specific features over others. The proposed methodology can minimize the experimental cost of measuring rheological parameters and serves as a quick assessment tool.

3.
ACS Omega ; 9(17): 19620-19626, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38708275

ABSTRACT

This study describes how varying oil/water contents affect emulsion formation and the impact they have on emulsion droplet size, viscosity, and interfacial behavior. Crude oil (continuous phase) volume fractions of 40, 50, 60, and 70 vol % were probed in the various W/O emulsions formed. Experimental results from optical morphology revealed the emulsion droplets kept reducing as the crude oil fraction kept increasing, while the droplets were nearly unnoticeable in the emulsions derived from 60 and 70% crude oil. The viscosity-shear rate of emulsions produced from 40, 50, and 60 vol % crude oil exhibited a non-Newtonian behavior owing to the substantial volume of water content in their emulsions, whereas the viscosity-shear rate of the emulsion with 70 vol % crude oil exhibited a Newtonian behavior similar to the pure crude oil, suggesting a thorough blending of oil-water at this crude oil fraction. Besides, the viscosity-temperature measurements revealed that the viscosity of these emulsions diminished as the temperature increased and the viscosity reduction became more noticeable in an emulsion comprising 70 vol % crude oil. In the interfacial assessment, the increased crude oil content in the produced emulsion led to a sharp reduction in the interfacial tension (IFT). The IFT values after 500 s contacts between the emulsion and water (surrounding phase) were 11.86, 10.02, 8.08, and 6.99 mN/m for 40, 50, 60, and 70 vol % crude oil, respectively. Demulsification experiments showed that water removal becomes more challenging with a large volume of crude oil and a small water content. Demulsification performances of the lab-grown nonionic demulsifier (NID) after 10 h of demulsification activity at room temperature (25 °C) were 98, 90, 17.5, and 10% for the emulsions formed from 40, 50, 60, and 70 vol % crude oil, respectively, indicating that the demulsification degree decreases with an increasing crude oil content. Viscosity-time determination was applied to affirm the activity of NID on the emulsion formulated with a 50% crude oil fraction. The injection of NID in this emulsion triggered a sharp viscosity reduction, indicating the adsorption of NID at the oil-water interface and disruption of emulsifiers, enabling emulsion stability.

4.
ACS Omega ; 9(1): 1042-1055, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38222667

ABSTRACT

Foam, a versatile underbalanced drilling fluid, shows potential for improving the drilling efficiency and reducing formation damage. However, the existing literature lacks insight into foam behavior under high-pH drilling conditions. This study introduces a novel approach using synthesized seawater, replacing the conventional use of freshwater on-site for the foaming system's liquid base. This approach is in line with sustainability objectives and offers novel perspectives on foam stability under high-pH conditions. Experiments, conducted with a high-pressure, high-temperature (HPHT) foam analyzer, investigate how pressure and temperature affect foam properties. The biodegradable foaming agent ammonium alcohol ether sulfate (AAES) is employed. Results demonstrate that the pressure significantly impacts foam stability. Increasing pressure enhances stability, reducing decay rates and promoting uniform bubble sizes, especially at lower temperatures. This highlights foam's capacity to withstand high-pressure conditions. Conversely, the temperature plays a substantial role in foam decay, particularly at elevated temperatures (75 and 90 °C). Decreased liquid viscosity accelerates the liquid drainage and foam decay. While pressure mainly influences the AAES foam stability at temperatures up to 50 °C, temperature becomes the dominant factor at higher temperatures. Temperature's impact on foamability is minimal under constant pressure, maintaining consistent gas volume for maximum foam height. However, foam stability is sensitive to temperature variations, with increasing temperature leading to a more significant bubble size increase gradient. These findings stress the importance of considering temperature effects in foam drilling, particularly in deep and high-temperature environments. AAES foam exhibits stability at lower temperatures, making it suitable for surface and intermediate drilling. Understanding temperature-induced changes in foam structure and bubble size is essential for optimizing performance in high-temperature and deep drilling scenarios.

5.
ACS Omega ; 8(49): 47057-47066, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38107941

ABSTRACT

Significant amounts of hydrocarbon resources are left behind after primary and secondary recovery processes, necessitating the application of enhanced oil recovery (EOR) techniques for improving the recovery of trapped oil from subsurface formations. In this respect, the wettability of the rock is crucial in assessing the recovery and sweep efficiency of trapped oil. The subsurface reservoirs are inherently contaminated with organic acids, which renders them hydrophobic. Recent research has revealed the significant impacts of nanofluids, surfactants, and methyl orange on altering the wettability of organic-acid-contaminated subsurface formations into the water-wet state. This suggests that the toxic dye methylene blue (MB), which is presently disposed of in huge quantities and contaminates subsurface waters, could be used in EOR. However, the mechanisms behind hydrocarbon recovery using MB solution for attaining hydrophilic conditions are not fully understood. Therefore, the present work examines the impacts of MB on the wettability reversal of organic-acid-contaminated Khewra sandstone samples (obtained from the outcrop in the Potwar Basin, Pakistan) under the downhole temperature and pressure conditions. The sandstone samples are prepared by aging with 10-2 mol/L stearic acid and subsequently treated with various amounts of aqueous MB (10-100 mg/L) for 1 week. Contact angle measurements are then conducted under various physio-thermal conditions (0.1-20 MPa, 25-50 °C, and salinities of 0.1-0.3 M). The results indicate that the Khewra sandstone samples become hydrophobic in the presence of organic acid and under increased pressure, temperature, and salinity. However, the wettability changes from oil-wet to preferentially water-wet in the presence of various MB solutions, thus highlighting the favorable effects of MB on EOR from the Khewra sandstone formation. Moreover, the most significant change in wettability is observed for the Khewra sandstone sample that was aged using 100 mg/L MB. These results suggest that injecting MB into deep underground Khewra sandstone reservoirs may produce more residual hydrocarbons.

6.
ACS Omega ; 8(44): 41004-41021, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37970044

ABSTRACT

The use of different types of chemicals in upstream oilfield operations is critical for optimizing the different operations involved in hydrocarbon exploration and production. Surfactants are a type chemical that are applied in various upstream operations, such as drilling, fracturing, and enhanced oil recovery. However, due to their nonbiodegradability and toxicity, the use of synthetic surfactants has raised environmental concerns. Natural surfactants have emerged because of the hunt for sustainable and environmentally suitable substitutes. This Review discusses the role of natural surfactants in upstream operations as well as their benefits and drawbacks. The Review discusses the basic characteristics of surfactants, their classification, and the variables that affect their performance. Finally, the Review examines the possible applications of natural surfactants in the upstream oil sector and identifies areas that require further research.

7.
Sci Rep ; 13(1): 15528, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37726527

ABSTRACT

Sand production is a major issue in the oil and gas industry. Unconsolidated sand can be produced with the oil or gas a cause many issues to the production facilities. Enzyme-induced carbonate precipitation (EICP) is a promising method for sand consolidation and is characterized by its environment friendliness. Numerous studies have shown its effectiveness in ambient conditions. However, oil and gas downhole well operations are high pressure and high-temperature conditions. The objective of this study is to investigate effect of high temperature on EICP reaction and its efficiency in terms of uniformity to consolidate different types of sand samples. In this paper, the behavior of EICP solutions is examined in high temperatures from 25 to 90 °C. The study shows that high temperature environment doesn't handicap efficiency but in contrast it can favor the reaction if optimum concentration of reactants has been selected. The temperature effect is also discussed in terms of controllability of reaction which can favor application of reaction. Qualitive analysis shows when EICP solutions containing more than 50,000 ppm of metal ions and stoichiometrically surplus urea requires exposure to heat for reaction progress. The effect of sand particle size and its implication on the consolidation process was examined. Particle size of fine and medium sand ranged from 125 to 250 µm and 250 to 425 µm respectively while for coarse sand 70% sand particle size was between 425 and 700 µm. Designed EICP solutions achieve 9,000 psi for medium and almost 5,000 psi intrinsic specific energy for coarse sand samples. However, treated samples were subject to non-uniform distribution of strength of which can be up to 8,000 psi difference between top and bottom half of the samples.

8.
ACS Omega ; 8(34): 30790-30801, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37663473

ABSTRACT

Wettability alteration has been identified to be one of the important mechanisms to improve the microscopic recovery in many of the enhanced oil recovery (EOR) methods including polymer flood, surfactant flood, low salinity flood, microbial flood, alkaline flood, etc. Ensuring the oil-wet nature of the formation before flooding in the laboratory is necessary to study the efficiency of the EOR process, which targets microscopic recovery through wettability alteration. Nevertheless, altering the wettability depends on several parameters, such as aging time, aging temperature, core nature, oil properties, etc. Although several researchers investigated the effect of individual parameters on wettability alteration, the literature is scarce, and the question of what is the shortest and yet the most reliable aging time for ensuring wettability alteration for the specific rock-oil system at different temperatures remains unclear. This paper attempts to seek an answer to this question by compiling the relevant literature to find the effect of individual parameters such as different aging times, temperatures, oil compositions, and rock lithologies on wettability alteration. Results observed from data analysis showed different windows for aging conditions depending on the core sample lithology, initial wettability, and type of oil used. It was noticed that the higher the asphaltene content in the crude oil used, the lower the time and temperature that it takes to alter the sample wettability. Aging a sandstone core under 80 °C using crude oil with 11 wt % % asphaltene took 7 days to shift the core from strongly water-wet to neutral-wet. The same wettability alteration was achieved in 14 days when aging the sandstone sample at 90 °C using crude oil with 0.85 wt % asphaltene content. Generally, it was observed that the aging time decreased as the temperature increased. Moreover, as the sample has a lower initial water wettability condition, the time that it needs to be aged becomes higher. Results indicated that carbonates in general require less aging time to alter their wettability condition to oil-wet, around 1-7 days, compared with sandstones, around 14-21 days.

9.
Sci Rep ; 13(1): 11936, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37488132

ABSTRACT

In chemical enhanced oil recovery (cEOR) techniques, surfactants are extensively used for enhancing oil recovery by reducing interfacial tension and/or modifying wettability. However, the effectiveness and economic feasibility of the cEOR process are compromised due to the adsorption of surfactants on rock surfaces. Therefore, surfactant adsorption must be reduced to make the cEOR process efficient and economical. Herein, the synergic application of low salinity water and a cationic gemini surfactant was investigated in a carbonate rock. Firstly, the interfacial tension (IFT) of the oil-brine interface with surfactant at various temperatures was measured. Subsequently, the rock wettability was determined under high-pressure and high-temperature conditions. Finally, the study examined the impact of low salinity water on the adsorption of the cationic gemini surfactant, both statically and dynamically. The results showed that the low salinity water condition does not cause a significant impact on the IFT reduction and wettability alteration as compared to the high salinity water conditions. However, the low salinity water condition reduced the surfactant's static adsorption on the carbonate core by four folds as compared to seawater. The core flood results showed a significantly lower amount of dynamic adsorption (0.11 mg/g-rock) using low salinity water conditions. Employing such a method aids industrialists and researchers in developing a cost-effective and efficient cEOR process.

10.
Front Bioeng Biotechnol ; 11: 1118993, 2023.
Article in English | MEDLINE | ID: mdl-37139046

ABSTRACT

The sand production during oil and gas extraction poses a severe challenge to the oil and gas companies as it causes erosion of pipelines and valves, damages the pumps, and ultimately decreases production. There are several solutions implemented to contain sand production including chemical and mechanical means. In recent times, extensive work has been done in geotechnical engineering on the application of enzyme-induced calcite precipitation (EICP) techniques for consolidating and increasing the shear strength of sandy soil. In this technique, calcite is precipitated in the loose sand through enzymatic activity to provide stiffness and strength to the loose sand. In this research, we investigated the process of EICP using a new enzyme named alpha-amylase. Different parameters were investigated to get the maximum calcite precipitation. The investigated parameters include enzyme concentration, enzyme volume, calcium chloride (CaCl2) concentration, temperature, the synergistic impact of magnesium chloride (MgCl2) and CaCl2, Xanthan Gum, and solution pH. The generated precipitate characteristics were evaluated using a variety of methods, including Thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). It was observed that the pH, temperature, and concentrations of salts significantly impact the precipitation. The precipitation was observed to be enzyme concentration-dependent and increase with an increase in enzyme concentration as long as a high salt concentration was available. Adding more volume of enzyme brought a slight change in precipitation% due to excessive enzymes with little or no substrate available. The optimum precipitation (87%) was yielded at 12 pH and with 2.5 g/L of Xanthan Gum as a stabilizer at a temperature of 75°C. The synergistic effect of both CaCl2 and MgCl2 yielded the highest CaCO3 precipitation (32.2%) at (0.6:0.4) molar ratio. The findings of this research exhibited the significant advantages and insights of alpha-amylase enzyme in EICP, enabling further investigation of two precipitation mechanisms (calcite precipitation and dolomite precipitation).

11.
ACS Omega ; 8(13): 12069-12078, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37033808

ABSTRACT

Interfacial tension (IFT) reduction and wettability alteration (WA) are both important enhanced oil recovery (EOR) mechanisms. In oil-wet formations, IFT reduction reduces the magnitude of negative capillary pressure, releasing trapped oil. WA changes the negative capillary pressure to positive conditions, helping the entrance of the aqueous phase, and the displacement of the oil phase. In most cases, IFT reduction and WA happen at the same time. However, studies regarding the coupled effect provided different, sometimes conflicting observations. It requires further study and better understanding. In our study, oil-aged Indiana limestone samples were chosen to represent oil-wet carbonate rocks. Static contact angle and spinning drop method were adopted for wettability assessment and IFT measurement, respectively. Spontaneous imbibition was adopted to reflect on the oil recovery mechanisms in different cases. The impact of IFT reduction, WA, and permeability on the coupled effect was discussed by choosing four pairs of comparison tests. Results showed that when the coupled effect took place, both a higher IFT value and a stronger WA performance resulted in faster and higher oil recoveries. The importance of IFT reduction was enhanced in the higher-permeability condition, while the importance of WA was enhanced in the lower-permeability condition.

12.
Molecules ; 28(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36838866

ABSTRACT

One of the foremost causes of wellbore instability during drilling operations is shale swelling and hydration induced by the interaction of clay with water-based mud (WBM). Recently, the use of surfactants has received great interest for preventing shale swelling, bit-balling problems, and providing lubricity. Herein, a novel synthesized magnetic surfactant was investigated for its performance as a shale swelling inhibitor in drilling mud. The conventional WBM and magnetic surfactant mixed WBM (MS-WBM) were formulated and characterized using Fourier Transform Infrared (FTIR) and Thermogravimetric analyzer (TGA). Subsequently, the performance of 0.4 wt% magnetic surfactant as shale swelling and clay hydration inhibitor in drilling mud was investigated by conducting linear swelling and capillary suction timer (CST) tests. Afterward, the rheological and filtration properties of the MS-WBM were measured and compared to conventional WBM. Lastly, the swelling mechanism was investigated by conducting a scanning electron microscope (SEM), zeta potential measurement, and particle size distribution analysis of bentonite-based drilling mud. Experimental results revealed that the addition of 0.4 wt% magnetic surfactant to WBM caused a significant reduction (~30%) in linear swelling. SEM analysis, contact angle measurements, and XRD analysis confirmed that the presence of magnetic surfactant provides long-term swelling inhibition via hydrophobic interaction with the bentonite particles and intercalation into bentonite clay layers. Furthermore, the inhibition effect showed an increase in fluid loss and a decrease in rheological parameters of bentonite mixed mud. Overall, the use of magnetic surfactant exhibits sterling clay swelling inhibition potential and is hereby proffered for use as a drilling fluid additive.


Subject(s)
Pulmonary Surfactants , Surface-Active Agents , Bentonite/chemistry , Clay , Minerals , Hydrophobic and Hydrophilic Interactions , Magnetic Phenomena
13.
Sci Rep ; 13(1): 1090, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36658191

ABSTRACT

Efficient demulsifiers for fast demulsification of asphaltene stabilized crude oil emulsions are currently in high demand. In this work, we evaluated the demulsification potential of ethyl cellulose (EC) demulsifiers with varying viscosities-4 cp, 22 cp, and 100 cp, designated as EC-4, EC-22, and EC-100. Demulsifcation efficiency (DE) of these demulsifiers to remove water from emulsions produced from distilled water, seawater, and different salts (NaCl, MgCl2, and CaCl2) solution were assessed using the bottle test technique at ambient and elevated temperatures (25 °C and 90 °C). The bottle test outcomes showed that EC-4 and EC-22 had better performance at the ambient conditions to demulsify the emulsions formed from distilled water with %DE of 85.71% and 28.57%, respectively, while EC-100 achieved 3.9% water removal owing to its high viscosity which inhibited its adsorption at the oil-water interface. At demulsification temperature (90 °C) under the emulsions from distilled water, the %DE of EC-4, EC-22, and EC-100 was 99.23%, 58.57%, and 42.85%, respectively. Seawater hastened the demulsification activities of these demulsifiers. Also, these demulsifiers demonstrated excellent demulsification in emulsions from various salts. The demulsification performance of the EC-4 demulsifier in the presence of any of these salts was approximately 98% while MgCl2 and CaCl2 accelerated the water/oil separation performance of EC-22 and EC-100 by promoting their diffusion and adsorption at the interface. Viscosity and shear stress measurements corroborated the results obtained from the bottle tests. Injection of EC demulsifiers led to a reduction in the viscosity and shear stress of the formed emulsion. Reduction in the shear stress and viscosity were highest in EC-4 and lowest in EC-100. Optical microscopic images of emulsion injected with EC-4 demulsifier were analyzed at various periods during viscosity measurements. Based on the optical images obtained at different durations, a demulsification mechanism describing the activity of the EC demulsifier was proposed.

14.
ACS Omega ; 8(1): 969-975, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36643534

ABSTRACT

Seawater (SW) and produced water (PW) could replace freshwater in hydraulic fracturing operations, but their high salinity impacts the fluid stability and results in formation damage. Few researchers investigated SW and PW individual ions' impact on polymer hydration and rheology. This research examines the rheology of carboxy methyl hydroxy propyl guar (CMHPG) polymer hydrated in salt ions in the presence of a chelating agent. The effect of various molar concentrations of SW and PW salt ions on the rheology of CMHPG polymer solution was examined. The tested salt ions included calcium chloride, magnesium chloride, sodium chloride, and sodium sulfate, which were compared to SW and deionized water (DI) solutions. The solutions were tested at 70 °C temperature, 500 psi pressure, and 100 1/s shear rate. A GLDA chelating agent was utilized at different concentrations to examine their impact on stabilizing the solution viscosity. We found that adding the GLDA to magnesium and calcium chloride solutions increased the viscosity. Results showed that sulfate ions control the rheology of seawater due to their similar rheological response to the addition of GLDA. The results help to understand how the SW and PW ions impact the rheology of fracturing fluids.

15.
Polymers (Basel) ; 14(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36501665

ABSTRACT

In this study, chitosan (CT) and naturally occurring acacia gum (AG) blends were employed as emulsifiers to form a series of emulsions developed from diesel and water. Effects of pH level (3, 5, 10, and 12) and various NaCl salt concentrations (0.25-1%) on the stability, viscosity, and interfacial properties of CT-(1%)/AG-(4%) stabilized Pickering emulsions were evaluated. Bottle test experiment results showed that the stability indexes of the CT/AG emulsions were similar under acidic (3 and 5) and alkaline (10 and 12) pH media. On the other hand, the effects of various NaCl concentrations on the stability of CT-(1%)/AG-(4%) emulsion demonstrated analogous behavior throughout. From all the NaCl concentrations and pH levels examined, viscosities of this emulsion decreased drastically with the increasing shear rate, indicating pseudoplastic fluid with shear thinning characteristics of these emulsions. The viscosity of CT-(1%)/AG-(4%) emulsion increased at a low shear rate and decreased with an increasing shear rate. The presence of NaCl salt and pH change in CT/AG solutions induced a transformation in the interfacial tension (IFT) at the diesel/water interface. Accordingly, the IFT values of diesel/water in the absence of NaCl/CT/AG (without emulsifier and salt) remained fairly constant for a period of 500 s, and its average IFT value was 26.16 mN/m. In the absence of salt, the addition of an emulsifier (CT-(1%)/AG-(4%)) reduced the IFT to 16.69 mN/m. When the salt was added, the IFT values were further reduced to 12.04 mN/m. At low pH, the IFT was higher (17.1 mN/M) compared to the value of the IFT (10.8 mN/M) at high pH. The results obtained will help understand the preparation and performance of such emulsions under different conditions especially relevant to oil field applications.

16.
Polymers (Basel) ; 14(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36365615

ABSTRACT

Polymer flooding is used to improve the viscosity of an injectant, thereby decreasing the mobility ratio and improving oil displacement efficiency in the reservoir. Thanks to their environmentally benign nature, natural polymers are receiving prodigious attention for enhanced oil recovery. Herein, the rheology and oil displacement properties of okra mucilage were investigated for its enhanced oil recovery potential at a high temperature and high pressure (HTHP) in carbonate cores. The cellulosic polysaccharide used in the study is composed of okra mucilage extracted from okra (Abelmoschus esculentus) via a hot water extraction process. The morphological property of okra mucilage was characterized with Fourier transform infrared (FTIR), while the thermal stability was investigated using a thermogravimetric analyzer (TGA). The rheological property of the okra mucilage was investigated for seawater salinity and high-temperature conditions using a TA rheometer. Finally, an oil displacement experiment of the okra mucilage was conducted in a high-temperature, high-pressure core flooding equipment. The TGA analysis of the biopolymer reveals that the polymeric solution was stable over a wide range of temperatures. The FTIR results depict that the mucilage is composed of galactose and rhamnose constituents, which are essentially found in polysaccharides. The polymer exhibited pseudoplastic behavior at varying shear rates. The viscosity of okra mucilage was slightly reduced when aged in seawater salinity and at a high temperature. Nonetheless, the cellulosic polysaccharide exemplified sufficiently good viscosity under high-temperature and high-salinity (HTHS) conditions. Finally, the oil recovery results from the carbonate core plug reveal that the okra mucilage recorded a 12.7% incremental oil recovery over waterflooding. The mechanism of its better displacement efficiency is elucidated.

17.
ACS Omega ; 7(35): 31318-31326, 2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36092577

ABSTRACT

Freshwater is usually used in hydraulic fracturing as it is less damaging to the formation and is compatible with the chemical additives. In recent years, seawater has been the subject of extensive research to reduce freshwater consumption. The study aims to optimize the rheology of seawater-based fracturing fluid with chemical additives that reduce the formation damage. The studied formulation consists of a polymer, a crosslinker, and a chelating agent to reduce seawater hardness. We used a standard industry rheometer to perform the rheology tests. By comparing five distinct grades [hydroxypropyl guar (HPG) and carboxymethyl hydroxypropyl guar (CMHPG)], we selected the guar derivative with the best rheological performance in seawater. Five different polymers (0.6 wt %) were hydrated with seawater and freshwater to select the suitable one. Then, the best performing polymer was chosen to be tested with (1.6, 4, and 8 wt %) N, N-dicarboxymethyl glutamic acid GLDA chelating agent and 1 wt % zirconium crosslinker. In the first part, the testing parameters were 120 °C temperature, 500 psi pressure, and 100 1/s shear rate. Then, the same formulations were tested at a ramped temperature between 25 and 120 °C. We observed that higher and more stable viscosity levels can be achieved by adding the GLDA after polymer hydration. In seawater, an instantaneous crosslinking occurs once the crosslinker is added even at room temperature, while in freshwater, the crosslinker is activated by ramping the temperature. We noted that, in the presence of a crosslinker, small changes in the chelating agent concentration have a considerable impact on the fluid rheology, as demonstrated in ramped temperature results. It is observed that the viscosities are higher and more persistent at lower concentrations of GLDA than at higher concentrations. The study shows the rheological response when different chemical additives are mixed in saline water for hydraulic fracturing applications.

18.
ACS Omega ; 7(30): 26137-26153, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35936443

ABSTRACT

Hydrocarbon production operations include water injection, varying stimulation approaches, and enhanced oil recovery techniques. These treatments often affect reservoir formation, production, and injection facilities. Such sorts of well operations cause the formation of organic and inorganic scales in the near-wellbore region and various production and injection structures. Downhole squeeze treatment is commonly used as a control measure to prevent scale precipitation. A scale inhibitor solution is introduced into a formation by applying a squeeze treatment. The method allows scale inhibitors to adsorb on the internal rock surface to avoid settling down the scale precipitates. Thus, the study of adsorption of different types of inhibitors to prevent scale formation on the reservoir rock through the execution of downhole squeeze treatment is becoming necessary. This study incorporated different experimental techniques, including dynamic adsorption experiments of chelating agents employing a coreflooding setup, inductively coupled plasma-optical emission spectrometry (ICP-OES) to inhibit the formation of iron-containing scales in limestone rocks, and ζ-potential measurements targeting determination of iron precipitation in varying pH environments on calcite minerals. The influence of the inhibitor soaking time and salt existence in the system on chelating agent adsorption was also evaluated in the coreflooding experiments. The findings based on the coreflooding tests reveal that the concentration of chelating agents plays a significant role in their adsorption on carbonate rocks. The treatments with 20 wt % ethylenediaminetetraacetic acid (EDTA) and 20 wt % diethylenetriaminepentaacetic acid produced the highest adsorption capacity in limestone rock samples by inhibiting 84 and 85% of iron(III) ions, respectively. Moreover, the presence of the salts (CaCl2 and MgCl2) considerably decreased the adsorption of 10 wt % EDTA to 56% (CaCl2) and 52% (MgCl2) and caused nearly 20% more permeability reduction, while more inhibitor soaking time resulted in comparably higher adsorption and lesser permeability diminution. The results of ζ-potential measurements showed that the pH environment controls iron(II) and (III) precipitation, and iron(III) starts to deposit from a low pH region, whereas iron(II) precipitates in increased pH environments in calcite minerals.

19.
ACS Omega ; 7(32): 28571-28587, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35990499

ABSTRACT

Scale formation and deposition in the subsurface and surface facilities have been recognized as a major cause of flow assurance issues in the oil and gas industry. Sulfate-based scales such as sulfates of calcium (anhydrite and gypsum) and barium (barite) are some of the commonly encountered scales during hydrocarbon production operations. Oilfield scales are a well-known flow assurance problem, which occurs mainly due to the mixing of incompatible brines. Researchers have largely focused on the rocks' petrophysical property modifications (permeability and porosity damage) caused by scale precipitation and deposition. Little or no attention has been paid to their influence on the surface charge and wettability of calcite minerals. Thus, this study investigates the effect of anhydrite and barite scales' presence on the calcite mineral surface charge and their propensity to alter the wetting state of calcite minerals. This was achieved vis-à-vis zeta-potential (ζ-potential) measurement. Furthermore, two modes of the scale control (slug and continuous injections) using ethylenediaminetetraacetic acid (EDTA) were examined to determine the optimal control strategy as well as the optimal inhibitor dosage. Results showed that the presence of anhydrite and barite scales in a calcite reservoir affects the colloidal stability of the system, thus posing a threat of precipitation, which would result in permeability and porosity damage. Also, the calcite mineral surface charge is affected by the presence of calcium and barium sulfate scales; however, the magnitude of change in the surface charge via ζ-potential measurement is insignificant to cause wettability alteration by the mineral scales. Slug and continuous injections of EDTA were implemented, with the optimal scale control strategy being the continuous injection of EDTA solutions. The optimal dosage of EDTA for anhydrite scale control is 5 and 1 wt % for the formation water and seawater environments, respectively. In the case of barite, in both environments, an EDTA dosage of 1 wt % suffices. Findings from this study not only further the understanding of the scale effects on calcite mineral systems but also provide critical insights into the potential of scale formation and their mechanisms of interactions for better injection planning and the development of a scale control strategy.

20.
Sci Rep ; 12(1): 10085, 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35710805

ABSTRACT

Calcium sulfate (CaSO4) scale has been identified as one of the most common scales contributing to several serious operating problems in oil and gas wells and water injectors. Removing this scale is considered an economically feasible process in most cases as it enhances the productivity of wells and prevents potential severe equipment damage. In this study, a single-step method utilizing potassium carbonate and tetrapotassium ethylenediaminetetraacetate (K4-EDTA) at high temperature (200 °F) has been used to remove CaSO4 scale. The CaSO4 scale was converted to calcium carbonate (CaCO3) and potassium sulfate (K2SO4) using a conversion agent, potassium carbonate (K2CO3), at a high temperature (200 °F) and under various pH conditions. Various parameters were investigated to obtain a dissolver composition at which the optimum dissolution efficiency is achieved including the effect of dissolver pH, soaking time, the concentration of K4-EDTA, the concentration of potassium carbonate (K2CO3), temperature impact and agitation effect. Fourier transform infrared, X-ray crystallography, ion chromatography, stability tests and corrosion tests were carried out to test the end product of the process and showcase the stability of the dissolver at high temperature conditions. A reaction product (K2SO4) was obtained in most of the tests with different quantities and was soluble in both water and HCl. It was observed that the dissolver solution was effective at low pH (7) and resulted in a negligible amount of reaction product with 3 wt% CaSO4 dissolution. The 10.5-pH dissolver was effective in most of the cases and provided highest dissolution efficiency. The reaction product has been characterized and showed it is not corrosive. Both 7-pH and 10.5-pH dissolvers showed high stability at high temperature and minimum corrosion rates. The single step dissolution process showed its effectiveness and could potentially save significant pumping time if implemented in operation.

SELECTION OF CITATIONS
SEARCH DETAIL
...