Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36623253

ABSTRACT

U.S. Environmental Protection Agency (EPA) air quality (AQ) monitors, the "gold standard" for measuring air pollutants, are sparsely positioned across the U.S. Low-cost sensors (LCS) are increasingly being used by the public to fill in the gaps in AQ monitoring; however, LCS are not as accurate as EPA monitors. In this work, we investigate factors impacting the differences between an individual's true (unobserved) exposure to air pollution and the exposure reported by their nearest AQ instrument (which could be either an LCS or an EPA monitor). We use simulations based on California data to explore different combinations of hypothetical LCS placement strategies (e.g., at schools or near major roads), for different numbers of LCS, with varying plausible amounts of LCS device measurement errors. We illustrate how real-time AQ reporting could be improved (or, in some cases, worsened) by using LCS, both for the population overall and for marginalized communities specifically. This work has implications for the integration of LCS into real-time AQ reporting platforms.

2.
Nature ; 601(7892): 228-233, 2022 01.
Article in English | MEDLINE | ID: mdl-35022594

ABSTRACT

Air pollution contributes to the global burden of disease, with ambient exposure to fine particulate matter of diameters smaller than 2.5 µm (PM2.5) being identified as the fifth-ranking risk factor for mortality globally1. Racial/ethnic minorities and lower-income groups in the USA are at a higher risk of death from exposure to PM2.5 than are other population/income groups2-5. Moreover, disparities in exposure to air pollution among population and income groups are known to exist6-17. Here we develop a data platform that links demographic data (from the US Census Bureau and American Community Survey) and PM2.5 data18 across the USA. We analyse the data at the tabulation area level of US zip codes (N is approximately 32,000) between 2000 and 2016. We show that areas with higher-than-average white and Native American populations have been consistently exposed to average PM2.5 levels that are lower than areas with higher-than-average Black, Asian and Hispanic or Latino populations. Moreover, areas with low-income populations have been consistently exposed to higher average PM2.5 levels than areas with high-income groups for the years 2004-2016. Furthermore, disparities in exposure relative to safety standards set by the US Environmental Protection Agency19 and the World Health Organization20 have been increasing over time. Our findings suggest that more-targeted PM2.5 reductions are necessary to provide all people with a similar degree of protection from environmental hazards. Our study is observational and cannot provide insight into the drivers of the identified disparities.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/analysis , Environmental Exposure/analysis , Ethnicity , Humans , Income , Particulate Matter/adverse effects , Particulate Matter/analysis
3.
Sci Rep ; 11(1): 23517, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34876601

ABSTRACT

Lockdown measures implemented in response to the COVID-19 pandemic produced sudden behavioral changes. We implement counterfactual time series analysis based on seasonal autoregressive integrated moving average models (SARIMA), to examine the extent of air pollution reduction attained following state-level emergency declarations. We also investigate whether these reductions occurred everywhere in the US, and the local factors (geography, population density, and sources of emission) that drove them. Following state-level emergency declarations, we found evidence of a statistically significant decrease in nitrogen dioxide (NO2) levels in 34 of the 36 states and in fine particulate matter (PM2.5) levels in 16 of the 48 states that were investigated. The lockdown produced a decrease of up to 3.4 µg/m3 in PM2.5 (observed in California) with range (- 2.3, 3.4) and up to 11.6 ppb in NO2 (observed in Nevada) with range (- 0.6, 11.6). The state of emergency was declared at different dates for different states, therefore the period "before" the state of emergency in our analysis ranged from 8 to 10 weeks and the corresponding "after" period ranged from 8 to 6 weeks. These changes in PM2.5 and NO2 represent a substantial fraction of the annual mean National Ambient Air Quality Standards (NAAQS) of 12 µg/m3 and 53 ppb, respectively. As expected, we also found evidence that states with a higher percentage of mobile source emissions (obtained from 2014) experienced a greater decline in NO2 levels after the lockdown. Although the socioeconomic restrictions are not sustainable, our results provide a benchmark to estimate the extent of achievable air pollution reductions. Identification of factors contributing to pollutant reduction can help guide state-level policies to sustainably reduce air pollution.


Subject(s)
Air Pollution/analysis , COVID-19/epidemiology , COVID-19/virology , Databases, Factual , Humans , Nitrogen Dioxide/analysis , Particulate Matter/analysis , SARS-CoV-2/isolation & purification , United States/epidemiology
4.
Sci Adv ; 7(33)2021 Aug.
Article in English | MEDLINE | ID: mdl-34389545

ABSTRACT

The year 2020 brought unimaginable challenges in public health, with the confluence of the COVID-19 pandemic and wildfires across the western United States. Wildfires produce high levels of fine particulate matter (PM2.5). Recent studies reported that short-term exposure to PM2.5 is associated with increased risk of COVID-19 cases and deaths. We acquired and linked publicly available daily data on PM2.5, the number of COVID-19 cases and deaths, and other confounders for 92 western U.S. counties that were affected by the 2020 wildfires. We estimated the association between short-term exposure to PM2.5 during the wildfires and the epidemiological dynamics of COVID-19 cases and deaths. We adjusted for several time-varying confounding factors (e.g., weather, seasonality, long-term trends, mobility, and population size). We found strong evidence that wildfires amplified the effect of short-term exposure to PM2.5 on COVID-19 cases and deaths, although with substantial heterogeneity across counties.

5.
BMC Health Serv Res ; 20(1): 776, 2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32838778

ABSTRACT

BACKGROUND: Global health priority setting increasingly focuses on understanding the functioning of health systems and on how they can be strengthened. Beyond vertical programs, health systems research should examine system-wide delivery platforms (e.g. health facilities) and operational elements (e.g. supply chains) as primary units of study and evaluation. METHODS: We use dynamical system methods to develop a simple analytical model for the supply chain of a low-income country's health system. In doing so, we emphasize the dynamic links that integrate the supply chain within other elements of the health system; and we examine how the evolution over time of such connections would affect drug delivery, following the implementation of selected interventions (e.g. enhancing road networks, expanding workforce). We also test feedback loops and forecasts to study the potential impact of setting up a digital system for tracking drug delivery to prevent drug stockout and expiration. RESULTS: Numerical simulations that capture a range of supply chain scenarios demonstrate the impact of different health system strengthening interventions on drug stock levels within health facilities. Our mathematical modeling also points to how implementing a digital drug tracking system could help anticipate and prevent drug stockout and expiration. CONCLUSION: Our mathematical model of drug supply chain delivery represents an important component toward the development of comprehensive quantitative frameworks that aim at describing health systems as complex dynamical systems. Such models can help predict how investments in system-wide interventions, like strengthening drug supply chains in low-income settings, may improve population health outcomes.


Subject(s)
Delivery of Health Care , Developing Countries , Models, Theoretical , Prescription Drugs/supply & distribution , Global Health , Government Programs , Humans , Income , Medical Assistance , Poverty
SELECTION OF CITATIONS
SEARCH DETAIL
...