Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Cytokine ; 167: 156212, 2023 07.
Article in English | MEDLINE | ID: mdl-37146542

ABSTRACT

The pathophysiology of atherosclerosis initiation and progression involves many inflammatory cytokines, one of them is interleukin (IL)-1α that has been shown to be secreted by activated macrophages. We have previously shown that IL-1α from bone marrow-derived cells is critical for early atherosclerosis development in mice. It is known that endoplasmic reticulum (ER) stress in macrophages is involved in progression to more advanced atherosclerosis, but it is still unknown whether this effect is mediated through cytokine activation or secretion. We previously demonstrated that IL-1α is required in ER stress-induced activation of inflammatory cytokines in hepatocytes and in the associated induction of steatohepatitis. In the current study, we aimed to examine the potential role of IL-1α in ER stress-induced activation of macrophages, which is relevant to progression of atherosclerosis. First, we demonstrated that IL-1α is required for atherosclerosis development and progression in the apoE knockout (KO) mouse model of atherosclerosis. Next, we showed that ER stress in mouse macrophages results in the protein production and secretion of IL-1α in a dose-dependent manner, and that IL-1α is required in ER stress-induced production of the C/EBP homologous protein (CHOP), a critical step in ER stress-mediated apoptosis. We further demonstrated that IL-1α-dependent CHOP production in macrophages is specifically mediated through the PERK-ATF4 signaling pathway. Altogether, these findings highlight IL-1α as a potential target for prevention and treatment of atherosclerotic cardiovascular disease.


Subject(s)
Atherosclerosis , Interleukin-1alpha , Animals , Mice , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Apoptosis , Atherosclerosis/genetics , Atherosclerosis/metabolism , Endoplasmic Reticulum Stress , Gene Deletion , Interleukin-1alpha/genetics , Interleukin-1alpha/metabolism , Macrophages/metabolism , Mice, Knockout
2.
Mar Drugs ; 20(7)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35877726

ABSTRACT

Vitamin A and provitamin A carotenoids are involved in the regulation of adipose tissue metabolism and inflammation. We examined the effect of dietary supplementation using all-trans and 9-cis ß-carotene-rich Dunaliella bardawil alga as the sole source of vitamin A on obesity-associated comorbidities and adipose tissue dysfunction in a diet-induced obesity mouse model. Three-week-old male mice (C57BL/6) were randomly allocated into two groups and fed a high-fat, vitamin A-deficient diet supplemented with either vitamin A (HFD) or ß-carotene (BC) (HFD-BC). Vitamin A levels in the liver, WATs, and BAT of the HFD-BC group were 1.5-2.4-fold higher than of the HFD group. BC concentrations were 5-6-fold greater in BAT compared to WAT in the HFD-BC group. The eWAT mRNA levels of the Mcp-1 and Cd68 were 1.6- and 2.1-fold lower, respectively, and the plasma cholesterol and triglyceride concentrations were 30% and 28% lower in the HFD-BC group compared with the HFD group. Dietary BC can be the exclusive vitamin A source in mice fed a high-fat diet, as shown by the vitamin A concentration in the plasma and tissues. Feeding BC rather than vitamin A reduces adipose tissue macrophage recruitment markers and plasma lipid concentrations.


Subject(s)
Chlorophyceae , beta Carotene , Adipose Tissue/metabolism , Animals , Chlorophyceae/metabolism , Diet, High-Fat/adverse effects , Gene Expression , Liver , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Triglycerides/metabolism , Vitamin A/pharmacology , beta Carotene/metabolism , beta Carotene/pharmacology
3.
Article in English | MEDLINE | ID: mdl-34487973

ABSTRACT

Maternal docosahexaenoic acid (DHA) is required during pregnancy to supply for normal fetal growth and development. This pilot study aimed to assess the unknown fatty acid (FA) composition in a cohort of non-pregnant and pregnant Israeli women at term and their offspring on a normal diet without n-3 FA supplementation. The fatty acid profile, analyzed using gas chromatography, showed significantly higher plasma monounsaturated (MUFA) and lower n-6 FA percent distribution with similar n-3 index, in pregnant compared to non-pregnant women. RBC exhibited significantly higher MUFA with similar n-3 index, in pregnant compared to non-pregnant women. N-3 FA significantly correlated between neonates' plasma, with higher n-3 index, and pregnant women's DHA. Conclusion: DHA levels in non-pregnant and pregnant Israeli women at term were comparable and the DHA in pregnant women's plasma positively correlated with their neonate's level, suggesting an efficient mother-fetus FA transfer and/or fetal fatty acid metabolism to longer FA products.


Subject(s)
Fatty Acids, Omega-3/blood , Fatty Acids, Omega-6/blood , Maternal-Fetal Exchange , Adult , Arabidopsis Proteins/blood , Carbon-Oxygen Ligases/blood , Case-Control Studies , Docosahexaenoic Acids/blood , Fatty Acids, Essential/blood , Fatty Acids, Unsaturated/blood , Female , Humans , Infant, Newborn , Israel , Maternal Nutritional Physiological Phenomena , Pilot Projects , Pregnancy , Triglycerides/blood , alpha-Linolenic Acid/blood , gamma-Linolenic Acid/blood
4.
J Nutr Biochem ; 91: 108597, 2021 05.
Article in English | MEDLINE | ID: mdl-33545323

ABSTRACT

Docosahexaenoic acid (DHA) is critical for normal brain development and function. DHA is in danger of being significantly reduced in the human food supply, and the question of whether its metabolic precursor, the essential n-3 alpha linolenic acid (ALA) during pregnancy, can support fetal brain DHA levels for optimal neurodevelopment, is fundamental. Female mice were fed either ALA-enriched or Control diet during pregnancy and lactation. The direct effect of maternal dietary ALA on lipids was analyzed in liver, red blood cells, brain and brain vasculature, together with genes of fatty acid metabolism and transport in three-week-old offspring. The long-term effect of maternal dietary ALA on brain fatty acids and memory was studied in 19-week-old offspring. Three-week-old ALA offspring showed higher levels of n-3 fatty acids in liver, red blood cell, blood-brain barrier (BBB) vasculature and brain parenchyma, DHA enrichment in brain phospholipids and higher gene and protein expression of the DHA transporter, major facilitator superfamily domain containing 2a, compared to Controls. 19-week-old ALA offspring showed higher brain DHA levels and better memory performance than Controls. The increased brain DHA levels induced by maternal dietary ALA during pregnancy-lactation, together with the up-regulated levels of major facilitator superfamily domain containing 2a, may indicate a mode for greater DHA uptake with long-term impact on better memory in ALA offspring.


Subject(s)
Brain/metabolism , Dietary Supplements , Docosahexaenoic Acids/metabolism , alpha-Linolenic Acid/pharmacology , Animals , Animals, Newborn , Brain/drug effects , Female , Memory/drug effects , Mice , Mice, Inbred C57BL , Pregnancy , Weaning
5.
Harefuah ; 160(1): 38-44, 2021 01.
Article in Hebrew | MEDLINE | ID: mdl-33474877

ABSTRACT

INTRODUCTION: Despite the impressive decline in mortality from atherosclerotic cardiovascular diseases (ASCVD), these diseases still account for a large proportion of the overall morbidity and mortality worldwide. A vast amount of research has demonstrated the key role played by circulating lipoproteins, and especially low-density lipoprotein (LDL), in the etiology of atherosclerosis, and numerous studies have proven the efficacy of interventions that lower the atherogenic lipoproteins in reducing morbidity and mortality from ASCVD. While previous guidelines placed an emphasis on the use HMG-CoA reductase inhibitors (statins) for the treatment of dyslipidemia, recent studies have shown that other LDL cholesterol lowering drugs, including ezetimibe and the PCSK9 inhibitors, can provide additional benefit when used in combination with (and in certain cases instead of) statins. These studies have also shown that blood LDL cholesterol levels lower than previously recommended targets provide additional benefit, without evidence of a threshold beyond which the benefit ceases and without excess adverse effects. The updated guidelines were formulated by a committee that consisted of representatives from the Israeli Society for the Research, Prevention and Treatment of Atherosclerosis, the Israel Society of Internal Medicine, the Israeli Heart Association, the Israeli Neurology Association and the Israel Association of Family Medicine. They provide recommendations for revised risk stratification of patients, novel target goals, and the use of evidence-based treatment and follow-up strategies with reference to specific patient sub-groups.


Subject(s)
Anticholesteremic Agents , Cardiovascular Diseases , Dyslipidemias , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Cardiovascular Diseases/etiology , Cardiovascular Diseases/prevention & control , Dyslipidemias/drug therapy , Humans , Israel , Proprotein Convertase 9
6.
J Mol Cell Cardiol ; 155: 125-137, 2021 06.
Article in English | MEDLINE | ID: mdl-33130150

ABSTRACT

AIMS: One unaddressed aspect of healing after myocardial infarction (MI) is how non-myocyte cells that survived the ischemic injury, keep withstanding additional cellular damage by stress forms typically arising during the post-infarction inflammation. Here we aimed to determine if cell survival is conferred by expression of a mitochondrial protein novel to the cardiac proteome, known as steroidogenic acute regulatory protein, (StAR/STARD1). Further studies aimed to unravel the regulation and role of the non-steroidogenic cardiac StAR after MI. METHODS AND RESULTS: Following permanent ligation of the left anterior descending coronary artery in mouse heart, timeline western blot analyses showed that StAR expression corresponds to the inflammatory response to MI. Following the identification of StAR in mitochondria of cardiac fibroblasts in culture, confocal microscopy immunohistochemistry (IHC) identified StAR expression in left ventricular (LV) activated interstitial fibroblasts, adventitial fibroblasts and endothelial cells. Further work with the primary fibroblasts model revealed that interleukin-1α (IL-1α) signaling via NF-κB and p38 MAPK pathways efficiently upregulates the expression of the Star gene products. At the functional level, IL-1α primed fibroblasts were protected against apoptosis when exposed to cisplatin mimicry of in vivo apoptotic stress; yet, the protective impact of IL-1α was lost upon siRNA mediated StAR downregulation. At the physiological level, StAR expression was nullified during post-MI inflammation in a mouse model with global IL-1α deficiency, concomitantly resulting in a 4-fold elevation of apoptotic fibroblasts. Serial echocardiography and IHC studies of mice examined 24 days after MI revealed aggravation of LV dysfunction, LV dilatation, anterior wall thinning and adverse tissue remodeling when compared with loxP control hearts. CONCLUSIONS: This study calls attention to overlooked aspects of cellular responses evolved under the stress conditions associated with the default inflammatory response to MI. Our observations suggest that LV IL-1α is cardioprotective, and at least one mechanism of this action is mediated by induction of StAR expression in border zone fibroblasts, which renders them apoptosis resistant. This acquired survival feature also has long-term ramifications on the heart recovery by diminishing adverse remodeling and improving the heart function after MI.


Subject(s)
Fibroblasts/metabolism , Gene Expression Regulation , Interleukin-1alpha/metabolism , Myocardial Infarction/etiology , Myocardial Infarction/metabolism , Phosphoproteins/genetics , Ventricular Remodeling/genetics , Animals , Apoptosis/genetics , Biomarkers , Cells, Cultured , Cytokines/blood , Cytokines/metabolism , Disease Models, Animal , Disease Susceptibility , Female , Fluorescent Antibody Technique , Interleukin-1alpha/genetics , Male , Mice , Mice, Knockout , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Phosphoproteins/metabolism , Signal Transduction
7.
Nutrients ; 12(6)2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32492795

ABSTRACT

Vitamin A deficiency (VAD) is a major health problem, especially in developing countries. In this study, we investigated the effect of VAD from weaning to adulthood in apoE-/- mice. Three-week-old male mice were allocated into four diet groups: I. VAD II. VAD+vitamin A (VA), 1500 IU retinyl-palmitate; III. VAD+ß-carotene (BC), 6 g/kg feed, containing 50% all-trans and 50% 9-cis BC. IV. VAD with BC and VA (BC+VA). After 13 weeks, we assessed the size of atherosclerotic plaques and measured VA in tissues and BC in plasma and tissues. VAD resulted in diminished hepatic VA levels and undetectable brain VA levels compared to the other groups. BC completely replenished VA levels in the liver, and BC+VA led to a two-fold elevation of hepatic VA accumulation. In adipose tissue, mice fed BC+VA accumulated only 13% BC compared to mice fed BC alone. Atherosclerotic lesion area of BC group was 73% lower compared to VAD group (p < 0.05). These results suggest that BC can be a sole source for VA and inhibits atherogenesis.


Subject(s)
Apolipoproteins E/deficiency , Atherosclerosis/etiology , Atherosclerosis/prevention & control , Dietary Supplements , Phytotherapy , Vitamin A Deficiency/drug therapy , beta Carotene/administration & dosage , Animals , Disease Models, Animal , Male , Mice, Inbred C57BL , Mice, Transgenic
8.
Nutr Metab Cardiovasc Dis ; 30(4): 709-716, 2020 04 12.
Article in English | MEDLINE | ID: mdl-32007335

ABSTRACT

BACKGROUND AND AIMS: Mediterranean diet has been associated with decreased cardiovascular morbidity and mortality. Both fish and olive oil are key components of this diet. Therefore, we compared their effects on nonalcoholic fatty liver disease (NAFLD) and atherogenesis in a mouse model, fed a high fat diet. METHODS AND RESULTS: Forty nine, female LDL receptor knockout (LDLR KO) mice were allocated into 3 groups and fed an atherogenic high fat (HF) diet for 9 weeks. The HF group was fed a high fat diet alone. A HF + OO group was fed a HF diet with added olive oil (60 ml/kg feed), and the third group (HF + FO) was fed a HF diet with added fish oil (60 ml/kg feed). Both additions of fish and olive oil, significantly decreased plasma cholesterol elevation compared to HF diet. Nevertheless, only fish oil addition reduced significantly atherosclerotic lesion area by 51% compared to HF group. Liver levels of eicosapentenoic (EPA) and docosahexaenoic (DHA) acids were several folds higher in HF + FO group than in HF and HF + OO groups. Liver levels of oleic acid were higher in HF + OO compared to the other groups. Moreover, Fish oil addition significantly decreased NAFLD scores related to steatosis and inflammation and lowered the expression of the inflammatory genes interleukin 6 (IL6) and monocyte chemoattractant protein 1 (MCP1). CONCLUSION: These results suggest that fish oil addition on top of an atherogenic, HF diet, is beneficial, while olive oil is not, in its effect on plaque formation and NAFLD in LDLR KO mice.


Subject(s)
Atherosclerosis/prevention & control , Diet, High-Fat , Docosahexaenoic Acids/administration & dosage , Eicosapentaenoic Acid/administration & dosage , Olive Oil/administration & dosage , Animals , Atherosclerosis/blood , Atherosclerosis/genetics , Atherosclerosis/pathology , Biomarkers/blood , Chemokine CCL2/metabolism , Cholesterol/blood , Disease Models, Animal , Docosahexaenoic Acids/metabolism , Eicosapentaenoic Acid/metabolism , Female , Interleukin-6/metabolism , Liver/metabolism , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/prevention & control , Oleic Acid/administration & dosage , Oleic Acid/metabolism , Plaque, Atherosclerotic , Receptors, LDL/deficiency , Receptors, LDL/genetics , Time Factors
9.
Adv Med Sci ; 65(1): 111-119, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31923770

ABSTRACT

PURPOSE: Lipoxygenases (LOX) have been implicated in carcinogenesis, however both pro- and anti-carcinogenic effects have been reported in different cancer models. Using transgenic mice, which specifically overexpress human 15-lipoxygenase (ALOX15) in endothelial cells (EC), we previously demonstrated significant inhibition of tumor development. In the Lewis lung carcinoma (LLC) model, the primary tumor developed similarly in both wild type (WT) and ALOX15 overexpressing mice. However, metastases development was significantly inhibited in the transgenic mice. Here, we explored the molecular basis for the anti-metastatic effect of endothelial cell specific ALOX15 overexpression. MATERIALS/METHODS: We used ALOX15 overexpressing mice, and in-vitro cell model to evaluate the molecular effect of ALOX15 on EC and LLC cells. RESULTS: When LLC cells were injected in WT and ALOX15 overexpressing mice, we observed a higher degree of apoptosis and necrosis in primary and metastatic tumors of ALOX15 overexpressing animals. These anti-carcinogenic and anti-metastatic effects were paralleled by augmented expression of cyclin-dependent kinase inhibitor 1A (CDKN1A; p21) and of the peroxisome proliferators-activated receptor (PPAR)γ and by downregulation of the steady state concentrations of connexin26 mRNA. Consistent with these in vivo effects, ALOX15 overexpression in LLC and HeLa cancer cells in vitro significantly reduced cell viability in culture. In contrast, similar treatment of non-cancerous B2B epithelial cells did not impact cell viability. CONCLUSIONS: Taken together, our data suggests that endothelial cell specific overexpression of ALOX15 promotes apoptosis and necrosis in primary and metastatic tumors in mice, by upregulation of P21 and PPARγ expression in adjacent cancer cells.


Subject(s)
Apoptosis , Arachidonate 15-Lipoxygenase/physiology , Biomarkers, Tumor/metabolism , Carcinoma, Lewis Lung/pathology , Disease Models, Animal , Endothelial Cells/pathology , Animals , Biomarkers, Tumor/genetics , Carcinoma, Lewis Lung/genetics , Carcinoma, Lewis Lung/metabolism , Cell Proliferation , Endothelial Cells/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Tumor Cells, Cultured
10.
Mol Immunol ; 117: 101-109, 2020 01.
Article in English | MEDLINE | ID: mdl-31759325

ABSTRACT

INTRODUCTION: The tight regulation of the cytokine network during macrophage activation is of prime importance to enable a fast and potent innate immune response against exogenous pathogens. The inflammation mediating ubiquitin-like protein HLA-F adjacent transcript number 10 (FAT10) was shown to be transcriptionally regulated by and also regulate the nuclear factor-κB (NFκB) signaling pathway. However, very little is known about the regulation of FAT10 gene expression during macrophage activation. RESULTS: RNA sequencing of interferon (IFN)γ-stimulated mouse peritoneal macrophages analyzed by ingenuity pathway analysis revealed significant involvement of tumor necrosis factor receptor 1 (TNFR1) signaling in addition to IFNγ signaling. Subsequently, IFNγ robustly upregulated FAT10 expression compared to a milder induction seen with TNFα or lipopolysaccharide (LPS) stimulation. While low dose IFNγ with TNFα synergistically elevated FAT10 expression, preincubation of macrophages with IFNγ strongly augmented TNFα-induced FAT10 expression. Moreover, a short preincubation with IFNγ, which did not elevate FAT10, was sufficient to potentiate the induction of FAT10 by TNFα. A double augmentation mechanism of TNFα signaling was demonstrated, where IFNγ rapidly induced the expression of TNFα and TNFR1, which further augmented the induction of TNFα and TNFR1 expression by TNFα. Importantly, the induction of FAT10 by IFNγ in macrophages from TNFα-deficient or TNFR1-deficient mice was completely inhibited compared to macrophages from wild type (WT) mice. Finally, we show that TNFα-induced FAT10 expression is dependent on NFκB signaling. CONCLUSION: IFNγ potentiates the TNFα/TNFR1 signaling pathway to induce FAT10 expression in mouse macrophages, mediated through NFκB network.


Subject(s)
Gene Expression Regulation/immunology , Interferon-gamma/immunology , Macrophage Activation/immunology , Macrophages/immunology , Signal Transduction/immunology , Ubiquitins/biosynthesis , Animals , Immunity, Innate/immunology , Interferon-gamma/metabolism , Macrophages/metabolism , Mice , Mice, Knockout , NF-kappa B/immunology , NF-kappa B/metabolism , Receptors, Tumor Necrosis Factor, Type I/immunology , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
11.
BMJ Open Diabetes Res Care ; 7(1): e000650, 2019.
Article in English | MEDLINE | ID: mdl-31749969

ABSTRACT

Objective: While extensive research revealed that interleukin (IL)-1ß contributes to insulin resistance (IR) development, the role of IL-1α in obesity and IR was scarcely studied. Using control, whole body IL-1α knockout (KO) or myeloid-cell-specific IL-1α-deficient mice, we tested the hypothesis that IL-1α deficiency would protect against high-fat diet (HFD)-induced obesity and its metabolic consequences. Research design and methods: To induce obesity and IR, control and IL-1α KO mice were given either chow or HFD for 16 weeks. Glucose tolerance test was performed at 10 and 15 weeks, representing early and progressive stages of glucose intolerance, respectively. Liver and epididymal white adipose tissue (eWAT) samples were analyzed for general morphology and adipocyte size. Plasma levels of adiponectin, insulin, total cholesterol and triglyceride (TG), lipoprotein profile as well as hepatic lipids were analyzed. Expression of lipid and inflammation-related genes in liver and eWAT was analyzed. Primary mouse hepatocytes isolated from control mice were treated either with dimethyl sulfoxide (DMSO) (control) or 20 ng/mL recombinant IL-1α for 24 hours and subjected to gene expression analysis. Results: Although total body weight gain was similar, IL-1α KO mice showed reduced adiposity and were completely protected from HFD-induced glucose intolerance. In addition, plasma total cholesterol and TG levels were lower and HFD-induced accumulation of liver TGs was completely inhibited in IL-1α KO compared with control mice. Expression of stearoyl-CoA desaturase1 (SCD1), fatty acid synthase (FASN), elongation of long-chain fatty acids family member 6 (ELOVL6), acetyl-CoA carboxylase (ACC), key enzymes that promote de-novo lipogenesis, was lower in livers of IL-1α KO mice. Treatment with recombinant IL-1α elevated the expression of ELOVL6 and FASN in mouse primary hepatocytes. Finally, mice with myeloid-cell-specific deletion of IL-1α did not show reduced adiposity and improved glucose tolerance. Conclusions: We demonstrate a novel role of IL-1α in promoting adiposity, obesity-induced glucose intolerance and liver TG accumulation and suggest that IL-1α blockade could be used for treatment of obesity and its metabolic consequences.


Subject(s)
Adiposity , Diet, High-Fat/adverse effects , Glucose Intolerance/prevention & control , Interleukin-1alpha/physiology , Lipogenesis , Liver/pathology , Obesity/pathology , Animals , Fatty Liver/metabolism , Fatty Liver/pathology , Fatty Liver/prevention & control , Glucose Intolerance/metabolism , Glucose Intolerance/pathology , Glucose Tolerance Test , Insulin Resistance , Liver/metabolism , Male , Mice , Mice, Knockout , Mice, Obese , Obesity/etiology , Obesity/metabolism
12.
PLoS One ; 12(9): e0184084, 2017.
Article in English | MEDLINE | ID: mdl-28953903

ABSTRACT

BACKGROUND AND AIMS: Fulminant hepatitis failure (FHF) is marked by the sudden loss of hepatic function, with a severe life-threatening course in persons with no prior history of liver disease. Interleukin (IL)-1α and IL-1ß are key inflammatory cytokines but little is known about their role in the development of FHF. The aim of this study was to assess the involvement of IL-1α and IL-1ß in the progression of LPS/GalN-induced FHF. METHODS: WT, IL-1α or IL-1ß deficient mice were injected with LPS/GalN. Blood and liver tissue were collected at different time points, FHF related pathways were examined. RESULTS: After FHF induction the survival of both IL-1α and IL-1ß KO mice was longer than that of WT mice. Lower serum liver enzyme levels, demonstrated reduced hepatic injury in the IL-1α and IL-1ßKO mice. Histologically detected liver injury and apoptotic hepatocytes were significantly reduced in the IL-1αand IL-1ßKO mice compared to WT mice. Reduced hepatic IkB levels and upregulated NFκB activity in WT mice remained inhibited in IL-1α and IL-1ß KO mice. Hepatic expression levels of TNFα and IL-6 were significantly increased in WT mice but not in IL-1α and IL-1ß KO mice. CONCLUSIONS: IL-1α and IL-1ß play a central role in the pathogenesis of LPS/GalN-induced FHF. These interleukins are associated with the activation of NFκB signaling, upregulation of the pro-inflammatory cytokines and liver damage and apoptosis. Since neither IL-1α nor IL-1ß depletions completely rescued the phenotype, we believe that IL-1α and IL-1ß have a similar and probably complementary role in FHF progression.


Subject(s)
Interleukin-1alpha/physiology , Interleukin-1beta/physiology , Liver Failure, Acute/physiopathology , Animals , Blotting, Western , In Situ Nick-End Labeling , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Real-Time Polymerase Chain Reaction
13.
Mol Reprod Dev ; 84(6): 460-467, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28337831

ABSTRACT

Follicle-stimulating hormone receptor (FSHR) is a pivotal regulator of ovarian response to hormonal stimulation. Inflammatory conditions have been linked to lower FSHR expression in granulosa cells (GCs) as well as an attenuated response to hormonal stimulation. The current study aimed to reveal if deficiency and/or blockage of the pro-inflammatory cytokine interleukin 1-alpha (IL1A) increased Fshr expression in rodent GCs. We found elevated Fshr transcript abundance, as assessed by quantitative PCR, in primary GCs isolated from Il1a-knockout compared to wild-type mice, and that the expression of FSHR is significantly higher in Il1a-knockout compared to wild-type ovaries. Supplementing GC cultures with recombinant IL1A significantly lowered Fshr expression in these cells. In accordance with the Fshr expression pattern, proliferation of GCs was higher in follicles from Il1a-knockout mice compared to wild-type mice, as indicated by the MKI67 immunohistochemical staining. Furthermore, treating wild-type mice with anakinra, an IL1 receptor 1 antagonist, significantly increased the expression of Fshr in primary GCs from treated compared to control mice. These data highlight an important interdependency between the potent pro-inflammatory cytokine IL1A and Fshr expression.


Subject(s)
Gene Expression Regulation , Granulosa Cells/metabolism , Interleukin-1alpha/metabolism , Receptors, FSH/biosynthesis , Animals , Female , Granulosa Cells/cytology , Interleukin-1alpha/genetics , Mice , Mice, Knockout , Receptors, FSH/genetics
14.
Nutrients ; 8(7)2016 Jul 19.
Article in English | MEDLINE | ID: mdl-27447665

ABSTRACT

Cholesterol efflux from macrophages is a key process in reverse cholesterol transport and, therefore, might inhibit atherogenesis. 9-cis-ß-carotene (9-cis-ßc) is a precursor for 9-cis-retinoic-acid (9-cis-RA), which regulates macrophage cholesterol efflux. Our objective was to assess whether 9-cis-ßc increases macrophage cholesterol efflux and induces the expression of cholesterol transporters. Enrichment of a mouse diet with ßc from the alga Dunaliella led to ßc accumulation in peritoneal macrophages. 9-cis-ßc increased the mRNA levels of CYP26B1, an enzyme that regulates RA cellular levels, indicating the formation of RA from ßc in RAW264.7 macrophages. Furthermore, 9-cis-ßc, as well as all-trans-ßc, significantly increased cholesterol efflux to high-density lipoprotein (HDL) by 50% in RAW264.7 macrophages. Likewise, food fortification with 9-cis-ßc augmented cholesterol efflux from macrophages ex vivo. 9-cis-ßc increased both the mRNA and protein levels of ABCA1 and apolipoprotein E (APOE) and the mRNA level of ABCG1. Our study shows, for the first time, that 9-cis-ßc from the diet accumulates in peritoneal macrophages and increases cholesterol efflux to HDL. These effects might be ascribed to transcriptional induction of ABCA1, ABCG1, and APOE. These results highlight the beneficial effect of ßc in inhibition of atherosclerosis by improving cholesterol efflux from macrophages.


Subject(s)
Atherosclerosis/prevention & control , Cholesterol, HDL/metabolism , Dietary Supplements , Lipid Regulating Agents/therapeutic use , Macrophages, Peritoneal/metabolism , Up-Regulation , beta Carotene/analogs & derivatives , ATP Binding Cassette Transporter 1/agonists , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1/agonists , ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , Animals , Apolipoproteins E/agonists , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Atherosclerosis/immunology , Atherosclerosis/metabolism , Atherosclerosis/pathology , Cells, Cultured , Chlorophyta/chemistry , Cholesterol, HDL/blood , Enzyme Induction , Lipid Regulating Agents/metabolism , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phytoplankton/chemistry , RAW 264.7 Cells , Receptors, LDL/genetics , Receptors, LDL/metabolism , Retinoic Acid 4-Hydroxylase/chemistry , Retinoic Acid 4-Hydroxylase/genetics , Retinoic Acid 4-Hydroxylase/metabolism , beta Carotene/metabolism , beta Carotene/therapeutic use
15.
J Hepatol ; 63(4): 926-33, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26022690

ABSTRACT

BACKGROUND & AIMS: ER stress promotes liver fat accumulation and induction of inflammatory cytokines, which contribute to the development of steatohepatitis. Unresolved ER stress upregulates the pro-apoptotic CHOP. IL-1α is localized to the nucleus in apoptotic cells, but is released when these cells become necrotic and induce sterile inflammation. We investigated whether IL-1α is involved in ER stress-induced apoptosis and steatohepatitis. METHODS: We employed WT and IL-1α-deficient mice to study the role of IL-1α in ER stress-induced steatohepatitis. RESULTS: Liver CHOP mRNA was induced in a time dependent fashion in the atherogenic diet-induced steatohepatitis model, and was twofold lower in IL-1α deficient compared to WT mice. In the ER stress-driven steatohepatitis model, IL-1α deficiency decreased the elevation in serum ALT levels, the number of apoptotic cells (measured as caspase-3-positive hepatocytes), and the expression of IL-1ß, IL-6, TNFα, and CHOP, with no effect on the degree of fatty liver formation. IL-1α was upregulated in ER-stressed-macrophages and the protein was localized to the nucleus. IL-1ß mRNA and CHOP mRNA and protein levels were lower in ER-stressed-macrophages from IL-1α deficient compared to WT mice. ER stress induced the expression of IL-1α and IL-1ß also in mouse primary hepatocytes. Recombinant IL-1α treatment in hepatocytes did not affect CHOP expression but upregulated both IL-1α and IL-1ß mRNA levels. CONCLUSION: We show that IL-1α is upregulated in response to ER stress and IL-1α deficiency reduces ER stress-induced CHOP expression, apoptosis and steatohepatitis. As a dual function cytokine, IL-1α may contribute to the induction of CHOP intracellularly, while IL-1α released from necrotic cells accelerates steatohepatitis via induction of inflammatory cytokines by neighboring cells.


Subject(s)
Endoplasmic Reticulum Stress/genetics , Gene Expression Regulation , Interleukin-1alpha/deficiency , Liver Diseases/genetics , RNA, Messenger/genetics , Transcription Factor CHOP/genetics , Animals , Blotting, Western , Cells, Cultured , Disease Models, Animal , Interleukin-1alpha/biosynthesis , Interleukin-1alpha/genetics , Liver Diseases/metabolism , Liver Diseases/pathology , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Real-Time Polymerase Chain Reaction , Transcription Factor CHOP/biosynthesis
16.
Cytokine ; 73(1): 138-43, 2015 May.
Article in English | MEDLINE | ID: mdl-25748836

ABSTRACT

IL-1α and IL-1ß are synthesized as 31kDa cell-associated precursors following TLR-4 stimulation, but their processing to the mature form and secretion require a second intracellular stimulus. The unique localization of the precursor of IL-1α (pro-IL-1α) to the nucleus suggested a role in transcriptional regulation of inflammatory cytokines. We explored the hypothesis that pro-IL-1α is involved in regulation of IL-1ß expression following TLR-4 stimulation. IL-1ß mRNA and protein levels were specifically decreased in macrophages from IL-1α-deficient mice following TLR-1/2, TLR-4 or TLR-9 stimulation, supporting the hypothesis. However, activation of the main upstream regulators of IL-1ß expression, IRF3, NFkB and p38/JNK, were not reduced in macrophages from IL-1α-deficient mice. In order to assess the specific role of IL-1α in macrophages, we generated mice with myeloid cell deficiency of IL-1α (LyzMCre-loxp). Despite over 90% knockdown of IL-1α, TLR-4 stimulated macrophages from LyzMCre-loxp mice did not produce lower levels of IL-1ß compared to IL-1α-loxp-flanked mice. In order to overcome the possibility that effects are caused by the incomplete deficiency of IL-1α, we generated new whole-body IL-1α knockout mice (GeneralCre-IL-1α) and the findings were similar to myeloid cell-deficient IL-1α. Collectively, our findings do not support the previously suggested role of nuclear IL-1α in gene regulation of IL-1ß. Rather, they suggest that IL-1α acts mainly as an alarmin that is sequestered in the nucleus following stimulation with TLR-4.


Subject(s)
Gene Knockdown Techniques , Interleukin-1alpha/metabolism , Interleukin-1beta/biosynthesis , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Interferon Regulatory Factor-3/metabolism , Interleukin-10/genetics , Interleukin-10/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Macrophages/drug effects , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells/drug effects , Myeloid Cells/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphorylation/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Time Factors , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
17.
PLoS One ; 10(1): e0115272, 2015.
Article in English | MEDLINE | ID: mdl-25629601

ABSTRACT

Atherosclerosis is a major cause of morbidity and mortality in developed societies, and begins when activated endothelial cells recruit monocytes and T-cells from the bloodstream into the arterial wall. Macrophages that accumulate cholesterol and other fatty materials are transformed into foam cells. Several epidemiological studies have demonstrated that a diet rich in carotenoids is associated with a reduced risk of heart disease; while previous work in our laboratory has shown that the 9-cis ß-carotene rich alga Dunaliella inhibits atherogenesis in mice. The effect of 9-cis ß-carotene on macrophage foam cell formation has not yet been investigated. In the present work, we sought to study whether the 9-cis ß-carotene isomer, isolated from the alga Dunaliella, can inhibit macrophage foam cell formation upon its conversion to retinoids. The 9-cis ß-carotene and Dunaliella lipid extract inhibited foam cell formation in the RAW264.7 cell line, similar to 9-cis retinoic acid. Furthermore, dietary enrichment with the algal powder in mice resulted in carotenoid accumulation in the peritoneal macrophages and in the inhibition of foam cell formation ex-vivo and in-vivo. We also found that the ß-carotene cleavage enzyme ß-carotene 15,15'-monooxygenase (BCMO1) is expressed and active in macrophages. Finally, 9-cis ß-carotene, as well as the Dunaliella extract, activated the nuclear receptor RXR in hepa1-6 cells. These results indicate that dietary carotenoids, such as 9-cis ß-carotene, accumulate in macrophages and can be locally cleaved by endogenous BCMO1 to form 9-cis retinoic acid and other retinoids. Subsequently, these retinoids activate the nuclear receptor RXR that, along with additional nuclear receptors, can affect various metabolic pathways, including those involved in foam cell formation and atherosclerosis.


Subject(s)
Foam Cells/drug effects , Foam Cells/metabolism , beta Carotene/pharmacology , beta-Carotene 15,15'-Monooxygenase/metabolism , Animal Feed , Animals , Cell Line , Cells, Cultured , Enzyme Activation , Gene Expression , Male , Mice , Mice, Knockout , Receptors, Retinoic Acid/agonists , Receptors, Retinoic Acid/metabolism , Stereoisomerism , beta Carotene/chemistry , beta Carotene/metabolism , beta-Carotene 15,15'-Monooxygenase/genetics
18.
Proc Natl Acad Sci U S A ; 111(34): 12492-7, 2014 Aug 26.
Article in English | MEDLINE | ID: mdl-25114230

ABSTRACT

Oocyte endowment dwindles away during prepubertal and adult life until menopause occurs, and apoptosis has been identified as a central mechanism responsible for oocyte elimination. A few recent reports suggest that uncontrolled inflammation may adversely affect ovarian reserve. We tested the possible role of the proinflammatory cytokine IL-1 in the age-related exhaustion of ovarian reserve using IL-1α and IL-1ß-KO mice. IL-1α-KO mice showed a substantially higher pregnancy rate and litter size compared with WT mice at advanced age. The number of secondary and antral follicles was significantly higher in 2.5-mo-old IL-1α-KO ovaries compared with WT ovaries. Serum anti-Müllerian hormone, a putative marker of ovarian reserve, was markedly higher in IL-1α-KO mice from 2.5 mo onward, along with a greater ovarian response to gonadotropins. IL-1ß-KO mice displayed a comparable but more subtle prolongation of ovarian lifespan compared with IL-1α-KO mice. The protein and mRNA of both IL-1α and IL-1ß mice were localized within the developing follicles (oocytes and granulosa cells), and their ovarian mRNA levels increased with age. Molecular analysis revealed decreased apoptotic signaling [higher B-cell lymphoma 2 (BCL-2) and lower BCL-2-associated X protein levels], along with a marked attenuation in the expression of genes coding for the proinflammatory cytokines IL-1ß, IL-6, and TNF-α in ovaries of IL-1α-KO mice compared with WT mice. Taken together, IL-1 emerges as an important participant in the age-related exhaustion of ovarian reserve in mice, possibly by enhancing the expression of inflammatory genes and promoting apoptotic pathways.


Subject(s)
Interleukin-1alpha/deficiency , Interleukin-1beta/deficiency , Ovary/physiology , Aging , Animals , Anti-Mullerian Hormone/blood , Apoptosis , Female , Gene Expression , Inflammation Mediators/metabolism , Interleukin-1alpha/genetics , Interleukin-1alpha/physiology , Interleukin-1beta/genetics , Interleukin-1beta/physiology , Litter Size , Mice , Mice, Inbred C57BL , Mice, Knockout , Ovary/cytology , Ovary/immunology , Pregnancy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, FSH/genetics , Receptors, FSH/physiology , Receptors, Interleukin-1 Type I/deficiency , Receptors, Interleukin-1 Type I/genetics , Receptors, Interleukin-1 Type I/physiology
19.
Dig Liver Dis ; 46(5): 433-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24582082

ABSTRACT

BACKGROUND: The role of Kupffer cell interleukin (IL)-1 in non-alcoholic steatohepatitis development remains unclear. AIMS: To evaluate the role of Kupffer cell IL-1α, IL-1ß or IL-1 receptor type-1 (IL-1R1) in steatohepatitis. METHODS: C57BL/6 mice were irradiated and transplanted with bone marrow-derived cells from WT, IL-1α-/-, IL-1ß-/- or IL-1R1-/- mice combined with Kupffer cell ablation with Gadolinium Chloride, and fed atherogenic diet. Plasma and liver triglycerides and cholesterol, serum alanine aminotransferase (ALT), liver histology and expression levels of inflammatory genes were assessed. RESULTS: The ablation and replacement of Kupffer cells with bone marrow-derived cells was confirmed. The atherogenic diet elevated plasma and liver cholesterol, reduced plasma and liver triglycerides and increased serum ALT levels in all groups. Steatosis and steatohepatitis were induced, but without liver fibrosis. A reduction in the severity of portal inflammation was observed only in mice with Kupffer cell deficiency of IL-1α. Accordingly, liver mRNA levels of inflammatory genes encoding for IL-1α, IL-1ß, TNFα, SAA1 and IL-6 were significantly lower in mice with Kupffer cell deficiency of IL-1α compared to WT mice. CONCLUSION: Selective deficiency of IL-1α in Kupffer cells reduces liver inflammation and expression of inflammatory cytokines, which may implicate Kupffer cell-derived IL-1α in steatohepatitis development.


Subject(s)
Cholesterol/metabolism , Fatty Liver/metabolism , Hepatitis/blood , Hypercholesterolemia/metabolism , Interleukin-1alpha/deficiency , Kupffer Cells/metabolism , Triglycerides/metabolism , Alanine Transaminase/blood , Animals , Diet, Atherogenic , Fatty Liver/genetics , Fatty Liver/pathology , Female , Gene Expression , Hepatitis/genetics , Hepatitis/pathology , Hypercholesterolemia/genetics , Interleukin-1alpha/genetics , Interleukin-1beta/deficiency , Interleukin-1beta/genetics , Interleukin-6/genetics , Male , Mice , Mice, Knockout , Portal System , RNA, Messenger/metabolism , Receptors, Interleukin-1 Type I/deficiency , Receptors, Interleukin-1 Type I/genetics , Serum Amyloid A Protein/genetics , Tumor Necrosis Factor-alpha/genetics , Vasculitis/metabolism
20.
Thromb Res ; 133(4): 688-92, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24525311

ABSTRACT

OBJECTIVE: The acute effect of heparin on lipoprotein clearance is well characterized. Yet, the effect of prolonged low-molecular-weight-heparin (LMWH) administration on post-prandial lipemia has remained so far unexplored. Recent reports suggest that LMWH could modify lipid and carbohydrate metabolism by diminishing TNFα-mediated inflammatory response. This, together with the known negative effect of TNF-α on insulin sensitivity, prompted us to hypothesize that LMWH would favorably affect post-prandial lipoprotein disposal. METHODS: Twenty four patients were given a vitamin A-fat loading meal at the end of 6-week enoxaparin treatment and after 3-month washout period. Post-prandial lipemia was assessed by measuring retinyl-palmitate (RP) during 8hours following the meal. Insulin sensitivity index (ISI), plasma lipolytic activity and plasma TNF-α were measured. RESULTS: Enoxaparin did not impact fasting plasma lipids and lipoproteins levels. Enoxaparin increased RP clearance in the chylomicron remnant (CMR) fraction by 32% (P<0.01). Additionally, enoxaparin decreased plasma TNF-α by 22% (P<0.01), increased hepatic lipase (HL) activity by 81% (P<0.01), along with a 2-fold increase in ISI (P<0.01). The decrease in CMR correlated with the reduction in TNFα and the increase in ISI and HL activity (R=0.48, -0.68, -0.56, respectively, p<0.05). Significant correlations were also found between the reduction in TNFα and both the increase in ISI and increase in HL activity (R=-0.43, -0.54, respectively, P<0.05). CONCLUSIONS: The association of the effect on post-prandial metabolism, plasma TNFα level and HL activity during prolonged enoxaparin treatment may support the hypothesis that the beneficial outcome of enoxaparin may possibly be linked to anti-inflammatory and lipase-potentiating impact.


Subject(s)
Chylomicrons/metabolism , Heparin, Low-Molecular-Weight/pharmacology , Lipase/metabolism , Liver/drug effects , Liver/enzymology , Tumor Necrosis Factor-alpha/blood , Female , Humans , Male , Middle Aged , Postprandial Period
SELECTION OF CITATIONS
SEARCH DETAIL
...