Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Stroke ; 54(10): 2676-2687, 2023 10.
Article in English | MEDLINE | ID: mdl-37646161

ABSTRACT

Ischemic stroke is a leading cause of disability and there is a paucity of therapeutic strategies that promote functional recovery after stroke. Transcutaneous vagus nerve stimulation (tVNS) has shown promising evidence as a tool to reduce infarct size in animal models of hyperacute stroke. In chronic stroke, tVNS paired with limb movements has been shown to enhance neurological recovery. In this review, we summarize the current evidence for tVNS in preclinical models and clinical trials in humans. We highlight the mechanistic pathways involved in the beneficial effects of tVNS. We critically evaluate the current gaps in knowledge and recommend the key areas of research required to translate tVNS into clinical practice in acute and chronic stroke.


Subject(s)
Ischemic Stroke , Transcutaneous Electric Nerve Stimulation , Vagus Nerve Stimulation , Animals , Humans , Vagus Nerve/physiology
3.
Ann Pharmacother ; 56(10): 1159-1173, 2022 10.
Article in English | MEDLINE | ID: mdl-35094598

ABSTRACT

OBJECTIVE: A literature review of antiplatelet agents for primary and secondary stroke prevention, including mechanism of action, cost, and reasons for lack of benefit. DATA SOURCES: Articles were gathered from MEDLINE, Cochrane Reviews, and PubMed databases (1980-2021). Abstracts from scientific meetings were considered. Search terms included ischemic stroke, aspirin, clopidogrel, dipyridamole, ticagrelor, cilostazol, prasugrel, glycoprotein IIb/IIIa inhibitors. STUDY SELECTION AND DATA EXTRACTION: English-language original and review articles were evaluated. Guidelines from multiple countries were reviewed. Articles were evaluated independently by 2 authors. DATA SYNTHESIS: An abundance of evidence supports aspirin and clopidogrel use for secondary stroke prevention. In the acute phase (first 21 days postinitial stroke), these medications have higher efficacy for preventing further stroke when combined, but long-term combination therapy is associated with higher hemorrhage rates. Antiplatelet treatment failure is influenced by poor adherence and genetic polymorphisms. Antiplatelet agents such as cilostazol may provide extra benefit over clopidogrel and aspirin, in certain racial groups, but further research in more diverse ethnic populations is needed. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE: This review presents the data available on the use of different antiplatelet agents poststroke. Dual therapy, recurrence after initiation of secondary preventative therapy, and areas for future research are discussed. CONCLUSIONS: Although good evidence exists for the use of certain antiplatelet agents postischemic stroke, there are considerable opportunities for future research to investigate personalized therapies. These include screening patients for platelet polymorphisms that confer antiplatelet resistance and for randomized trials including more racially diverse populations.


Subject(s)
Ischemic Stroke , Stroke , Aspirin , Cilostazol/therapeutic use , Clopidogrel , Drug Therapy, Combination , Humans , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/therapeutic use , Stroke/chemically induced , Stroke/drug therapy , Stroke/prevention & control
4.
Auton Neurosci ; 237: 102909, 2022 01.
Article in English | MEDLINE | ID: mdl-34861612

ABSTRACT

Stroke is one of the leading causes of death and disability globally. A significant proportion of stroke survivors are left with long term neurological deficits that have a detrimental effect on personal wellbeing and wider socioeconomic impacts. As such, there is an unmet need for novel therapies that improve neurological recovery after stroke. Invasive vagus nerve stimulation (VNS) paired with rehabilitation has been shown to improve upper limb motor function in chronic stroke. However, invasive VNS requires a surgical procedure and therefore may not be suitable for all stroke patients. Non-invasive, transcutaneous VNS (tVNS) via auricular vagus nerve stimulation in the ear (taVNS) and cervical vagus nerve stimulation in the neck (tcVNS) have been shown to activate similar vagal nerve projections in the central nervous system to invasive VNS. A number of pre-clinical studies indicate that tVNS delivered in acute middle cerebral artery occlusion reduces infarct size through anti-inflammatory effects, reduced excitotoxicity and increased blood-brain barrier integrity. Longer term effects of tVNS in stroke that may mediate neuroplasticity include microglial polarisation, angiogenesis and neurogenesis. Pilot clinical trials of taVNS indicate that taVNS paired with rehabilitation may improve upper limb motor and sensory function in patients with chronic stroke. In this review, we summarise and critically appraise the current pre-clinical and clinical evidence, outline the major ongoing clinical trials and detail the challenges and future directions regarding tVNS in acute and chronic stroke.


Subject(s)
Stroke , Transcutaneous Electric Nerve Stimulation , Vagus Nerve Stimulation , Humans , Sensation , Stroke/therapy , Vagus Nerve
SELECTION OF CITATIONS
SEARCH DETAIL
...