Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Doc Ophthalmol ; 149(1): 23-45, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38955958

ABSTRACT

PURPOSE: Multiple sclerosis (MS) is a neuro-inflammatory disease affecting the central nervous system (CNS), where the immune system targets and damages the protective myelin sheath surrounding nerve fibers, inhibiting axonal signal transmission. Demyelinating optic neuritis (ON), a common MS symptom, involves optic nerve damage. We've developed NeuroVEP, a portable, wireless diagnostic system that delivers visual stimuli through a smartphone in a headset and measures evoked potentials at the visual cortex from the scalp using custom electroencephalography electrodes. METHODS: Subject vision is evaluated using a short 2.5-min full-field visual evoked potentials (ffVEP) test, followed by a 12.5-min multifocal VEP (mfVEP) test. The ffVEP evaluates the integrity of the visual pathway by analyzing the P100 component from each eye, while the mfVEP evaluates 36 individual regions of the visual field for abnormalities. Extensive signal processing, feature extraction methods, and machine learning algorithms were explored for analyzing the mfVEPs. Key metrics from patients' ffVEP results were statistically evaluated against data collected from a group of subjects with normal vision. Custom visual stimuli with simulated defects were used to validate the mfVEP results which yielded 91% accuracy of classification. RESULTS: 20 subjects, 10 controls and 10 with MS and/or ON were tested with the NeuroVEP device and a standard-of-care (SOC) VEP testing device which delivers only ffVEP stimuli. In 91% of the cases, the ffVEP results agreed between NeuroVEP and SOC device. Where available, the NeuroVEP mfVEP results were in good agreement with Humphrey Automated Perimetry visual field analysis. The lesion locations deduced from the mfVEP data were consistent with Magnetic Resonance Imaging and Optical Coherence Tomography findings. CONCLUSION: This pilot study indicates that NeuroVEP has the potential to be a reliable, portable, and objective diagnostic device for electrophysiology and visual field analysis for neuro-visual disorders.


Subject(s)
Evoked Potentials, Visual , Multiple Sclerosis , Optic Neuritis , Humans , Evoked Potentials, Visual/physiology , Optic Neuritis/diagnosis , Optic Neuritis/physiopathology , Multiple Sclerosis/diagnosis , Multiple Sclerosis/physiopathology , Female , Male , Adult , Visual Fields/physiology , Visual Cortex/physiopathology , Electroencephalography/instrumentation , Middle Aged , Pilot Projects , Photic Stimulation
2.
Biomimetics (Basel) ; 9(4)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38667246

ABSTRACT

Pollination is a crucial ecological process with far-reaching impacts on natural and agricultural systems. Approximately 85% of flowering plants depend on animal pollinators for successful reproduction. Over 75% of global food crops rely on pollinators, making them indispensable for sustaining human populations. Wind, water, insects, birds, bats, mammals, amphibians, and mollusks accomplish the pollination process. The design features of flowers and pollinators in angiosperms make the pollination process functionally effective and efficient. In this paper, we analyze the design aspects of the honeybee-enabled flower pollination process using the axiomatic design methodology. We tabulate functional requirements (FRs) of flower and honeybee components and map them onto nature-chosen design parameters (DPs). We apply the "independence axiom" of the axiomatic design methodology to identify couplings and to evaluate if the features of a flower and a honeybee form a good design (i.e., uncoupled design) or an underperforming design (i.e., coupled design). We also apply the axiomatic design methodology's "information axiom" to assess the pollination process's robustness and reliability. Through this exploration, we observed that the pollination process is not only a good design but also a robust design. This approach to assessing whether nature's processes are good or bad designs can be valuable for biomimicry studies. This approach can also inform design considerations for bio-inspired innovations such as microrobots.

3.
Sensors (Basel) ; 24(4)2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38400360

ABSTRACT

Digital twin technology has become increasingly popular and has revolutionized data integration and system modeling across various industries, such as manufacturing, energy, and healthcare. This study aims to explore the evolving research landscape of digital twins using Keyword Co-occurrence Network (KCN) analysis. We analyze metadata from 9639 peer-reviewed articles published between 2000 and 2023. The results unfold in two parts. The first part examines trends and keyword interconnection over time, and the second part maps sensing technology keywords to six application areas. This study reveals that research on digital twins is rapidly diversifying, with focused themes such as predictive and decision-making functions. Additionally, there is an emphasis on real-time data and point cloud technologies. The advent of federated learning and edge computing also highlights a shift toward distributed computation, prioritizing data privacy. This study confirms that digital twins have evolved into complex systems that can conduct predictive operations through advanced sensing technologies. The discussion also identifies challenges in sensor selection and empirical knowledge integration.

4.
Front Physiol ; 14: 1294577, 2023.
Article in English | MEDLINE | ID: mdl-38124717

ABSTRACT

Pain, a pervasive global health concern, affects a large segment of population worldwide. Accurate pain assessment remains a challenge due to the limitations of conventional self-report scales, which often yield inconsistent results and are susceptible to bias. Recognizing this gap, our study introduces PainAttnNet, a novel deep-learning model designed for precise pain intensity classification using physiological signals. We investigate whether PainAttnNet would outperform existing models in capturing temporal dependencies. The model integrates multiscale convolutional networks, squeeze-and-excitation residual networks, and a transformer encoder block. This integration is pivotal for extracting robust features across multiple time windows, emphasizing feature interdependencies, and enhancing temporal dependency analysis. Evaluation of PainAttnNet on the BioVid heat pain dataset confirm the model's superior performance over the existing models. The results establish PainAttnNet as a promising tool for automating and refining pain assessments. Our research not only introduces a novel computational approach but also sets the stage for more individualized and accurate pain assessment and management in the future.

5.
PLOS Digit Health ; 2(9): e0000331, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37676880

ABSTRACT

Pain is a significant public health problem as the number of individuals with a history of pain globally keeps growing. In response, many synergistic research areas have been coming together to address pain-related issues. This work reviews and analyzes a vast body of pain-related literature using the keyword co-occurrence network (KCN) methodology. In this method, a set of KCNs is constructed by treating keywords as nodes and the co-occurrence of keywords as links between the nodes. Since keywords represent the knowledge components of research articles, analysis of KCNs will reveal the knowledge structure and research trends in the literature. This study extracted and analyzed keywords from 264,560 pain-related research articles indexed in IEEE, PubMed, Engineering Village, and Web of Science published between 2002 and 2021. We observed rapid growth in pain literature in the last two decades: the number of articles has grown nearly threefold, and the number of keywords has grown by a factor of 7. We identified emerging and declining research trends in sensors/methods, biomedical, and treatment tracks. We also extracted the most frequently co-occurring keyword pairs and clusters to help researchers recognize the synergies among different pain-related topics.

6.
medRxiv ; 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38234795

ABSTRACT

Purpose: Multiple Sclerosis (MS) is a neuro-inflammatory disease of the Central Nervous System (CNS) in which the body's immune system attacks and destroys myelin sheath that protects nerve fibers and causes disruption in axonal signal transmission. Demyelinating Optic Neuritis (ON) is often a manifestation of MS and involves inflammation of the optic nerve. ON can cause vision loss, pain and discomfort in the eyes, and difficulties in color perception.In this study, we developed NeuroVEP, a portable, wireless diagnostic system that delivers visual stimuli through a smartphone in a headset and measures evoked potentials at the visual cortex from near the O1, Oz, O2, O9 and O10 locations on the scalp (extended 10-20 system) using custom electroencephalography (EEG) electrodes. Methods: Each test session is constituted by a short 2.5-minute full-field visual evoked potentials (ffVEP) test, followed by a 12.5-minute multifocal VEP (mfVEP) test. The ffVEP test evaluates the integrity of the visual pathway by analyzing the P1 (also known as P100) component of responses from each eye, while the mfVEP test evaluates 36 individual regions of the visual field for abnormalities. Extensive signal processing, feature extraction methods, and machine learning algorithms were explored for analyzing the mfVEP responses. The results of the ffVEP test for patients were evaluated against normative data collected from a group of subjects with normal vision. Custom visual stimuli with simulated defects were used to validate the mfVEP results which yielded 91% accuracy of classification. Results: 20 subjects, 10 controls and 10 with MS and/or ON were tested with the NeuroVEP device and a standard-of-care (SOC) VEP testing device which delivers only ffVEP stimuli. In 91% of the cases, the ffVEP results agreed between NeuroVEP and SOC device. Where available, the NeuroVEP mfVEP results were in good agreement with Humphrey Automated Perimetry visual field analysis. The lesion locations deduced from the mfVEP data were consistent with Magnetic Resonance Imaging (MRI) and Optical Coherence Tomography (OCT) findings. Conclusion: This pilot study indicates that NeuroVEP has the potential to be a reliable, portable, and objective diagnostic device for electrophysiology and visual field analysis for neuro-visual disorders.

7.
Sensors (Basel) ; 22(21)2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36365785

ABSTRACT

Automatic pain intensity assessment from physiological signals has become an appealing approach, but it remains a largely unexplored research topic. Most studies have used machine learning approaches built on carefully designed features based on the domain knowledge available in the literature on the time series of physiological signals. However, a deep learning framework can automate the feature engineering step, enabling the model to directly deal with the raw input signals for real-time pain monitoring. We investigated a personalized Bidirectional Long short-term memory Recurrent Neural Networks (BiLSTM RNN), and an ensemble of BiLSTM RNN and Extreme Gradient Boosting Decision Trees (XGB) for four-category pain intensity classification. We recorded Electrodermal Activity (EDA) signals from 29 subjects during the cold pressor test. We decomposed EDA signals into tonic and phasic components and augmented them to original signals. The BiLSTM-XGB model outperformed the BiLSTM classification performance and achieved an average F1-score of 0.81 and an Area Under the Receiver Operating Characteristic curve (AUROC) of 0.93 over four pain states: no pain, low pain, medium pain, and high pain. We also explored a concatenation of the deep-learning feature representations and a set of fourteen knowledge-based features extracted from EDA signals. The XGB model trained on this fused feature set showed better performance than when it was trained on component feature sets individually. This study showed that deep learning could let us go beyond expert knowledge and benefit from the generated deep representations of physiological signals for pain assessment.


Subject(s)
Algorithms , Neural Networks, Computer , Humans , Pain Measurement , Machine Learning , Memory, Long-Term , Pain
8.
Front Neurosci ; 16: 831627, 2022.
Article in English | MEDLINE | ID: mdl-35221908

ABSTRACT

Optimization of pain assessment and treatment is an active area of research in healthcare. The purpose of this research is to create an objective pain intensity estimation system based on multimodal sensing signals through experimental studies. Twenty eight healthy subjects were recruited at Northeastern University. Nine physiological modalities were utilized in this research, namely facial expressions (FE), electroencephalography (EEG), eye movement (EM), skin conductance (SC), and blood volume pulse (BVP), electromyography (EMG), respiration rate (RR), skin temperature (ST), blood pressure (BP). Statistical analysis and machine learning algorithms were deployed to analyze the physiological data. FE, EEG, SC, BVP, and BP proved to be able to detect different pain states from healthy subjects. Multi-modalities proved to be promising in detecting different levels of painful states. A decision-level multi-modal fusion also proved to be efficient and accurate in classifying painful states.

9.
PLoS One ; 16(7): e0254108, 2021.
Article in English | MEDLINE | ID: mdl-34242325

ABSTRACT

In current clinical settings, typically pain is measured by a patient's self-reported information. This subjective pain assessment results in suboptimal treatment plans, over-prescription of opioids, and drug-seeking behavior among patients. In the present study, we explored automatic objective pain intensity estimation machine learning models using inputs from physiological sensors. This study uses BioVid Heat Pain Dataset. We extracted features from Electrodermal Activity (EDA), Electrocardiogram (ECG), Electromyogram (EMG) signals collected from study participants subjected to heat pain. We built different machine learning models, including Linear Regression, Support Vector Regression (SVR), Neural Networks and Extreme Gradient Boosting for continuous value pain intensity estimation. Then we identified the physiological sensor, feature set and machine learning model that give the best predictive performance. We found that EDA is the most information-rich sensor for continuous pain intensity prediction. A set of only 3 features from EDA signals using SVR model gave an average performance of 0.93 mean absolute error (MAE) and 1.16 root means square error (RMSE) for the subject-independent model and of 0.92 MAE and 1.13 RMSE for subject-dependent. The MAE achieved with signal-feature-model combination is less than 1 unit on 0 to 4 continues pain scale, which is smaller than the MAE achieved by the methods reported in the literature. These results demonstrate that it is possible to estimate pain intensity of a patient using a computationally inexpensive machine learning model with 3 statistical features from EDA signal which can be collected from a wrist biosensor. This method paves a way to developing a wearable pain measurement device.


Subject(s)
Machine Learning , Models, Theoretical , Pain/diagnosis , Physiology/instrumentation , Algorithms , Galvanic Skin Response , Generalization, Stimulus , Humans
10.
Biomimetics (Basel) ; 6(2)2021 May 19.
Article in English | MEDLINE | ID: mdl-34069537

ABSTRACT

The design of the human ear is one of nature's engineering marvels. This paper examines the merit of ear design using axiomatic design principles. The ear is the organ of both hearing and balance. A sensitive ear can hear frequencies ranging from 20 Hz to 20,000 Hz. The vestibular apparatus of the inner ear is responsible for the static and dynamic equilibrium of the human body. The ear is divided into the outer ear, middle ear, and inner ear, which play their respective functional roles in transforming sound energy into nerve impulses interpreted in the brain. The human ear has many modules, such as the pinna, auditory canal, eardrum, ossicles, eustachian tube, cochlea, semicircular canals, cochlear nerve, and vestibular nerve. Each of these modules has several subparts. This paper tabulates and maps the functional requirements (FRs) of these modules onto design parameters (DPs) that nature has already chosen. The "independence axiom" of the axiomatic design methodology is applied to analyze couplings and to evaluate if human ear design is a good design (i.e., uncoupled design) or a bad design (i.e., coupled design). The analysis revealed that the human ear is a perfect design because it is an uncoupled structure. It is not only a perfect design but also a low-cost design. The materials that are used to build the ear atom-by-atom are chiefly carbon, hydrogen, oxygen, calcium, and nitrogen. The material cost is very negligible, which amounts to only a few of dollars. After a person has deceased, materials in the human system are upcycled by nature. We consider space requirements, materials cost, and upcyclability as "constraints" in the axiomatic design. In terms of performance, the human ear design is very impressive and serves as an inspiration for designing products in industrial environments.

11.
Eye Brain ; 13: 111-127, 2021.
Article in English | MEDLINE | ID: mdl-33953628

ABSTRACT

BACKGROUND: Delayed Dark-Adapted vision Recovery (DAR) is a biomarker for Age-related Macular Degeneration (AMD), however its measurement is burdensome for patients and examiners. METHODS: In this study, we developed a portable, wireless and user-friendly system that employs a headset with a smartphone to deliver controlled photo-bleach and monocular pattern reversal stimuli, while using custom electroencephalography (EEG) electrodes and electronics in order to measure Dark-Adapted Visual Evoked Potentials (DAVEP) objectively and separately at the peripheral and central visual field. This is achieved in one comfortable 20-minute session, without requiring subject reporting. DAVEP responses post photo-bleach for up to 15 minutes were measured concurrently from both eyes in 12 AMD-patients, 1 degenerative myopia patient, and 8 controls who had no diagnosed macular vision loss. RESULTS: Robust positive polarity DAVEP responses were observed at 200-500 ms from stimulus onset to scotopic stimuli that have been seldom reported and analyzed previously. The amplitude recovery of the DAVEP response was significantly delayed in AMD patients as compared to controls. We developed DAVEP1 scores, a simple metric for DAR, which classified 90% of subject eyes correctly, indicating the presence of AMD in at least one eye of all pre-confirmed subjects with this diagnosis. CONCLUSION: We developed a user-friendly, portable VEP system and DAVEP1 metric, which show a high potential to identify DAR-deficits in AMD-patients. This novel technology could aid in early diagnosis of AMD.

12.
JMIR Med Inform ; 8(11): e19761, 2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33245283

ABSTRACT

BACKGROUND: Total joint replacements are high-volume and high-cost procedures that should be monitored for cost and quality control. Models that can identify patients at high risk of readmission might help reduce costs by suggesting who should be enrolled in preventive care programs. Previous models for risk prediction have relied on structured data of patients rather than clinical notes in electronic health records (EHRs). The former approach requires manual feature extraction by domain experts, which may limit the applicability of these models. OBJECTIVE: This study aims to develop and evaluate a machine learning model for predicting the risk of 30-day readmission following knee and hip arthroplasty procedures. The input data for these models come from raw EHRs. We empirically demonstrate that unstructured free-text notes contain a reasonably predictive signal for this task. METHODS: We performed a retrospective analysis of data from 7174 patients at Partners Healthcare collected between 2006 and 2016. These data were split into train, validation, and test sets. These data sets were used to build, validate, and test models to predict unplanned readmission within 30 days of hospital discharge. The proposed models made predictions on the basis of clinical notes, obviating the need for performing manual feature extraction by domain and machine learning experts. The notes that served as model inputs were written by physicians, nurses, pathologists, and others who diagnose and treat patients and may have their own predictions, even if these are not recorded. RESULTS: The proposed models output readmission risk scores (propensities) for each patient. The best models (as selected on a development set) yielded an area under the receiver operating characteristic curve of 0.846 (95% CI 82.75-87.11) for hip and 0.822 (95% CI 80.94-86.22) for knee surgery, indicating reasonable discriminative ability. CONCLUSIONS: Machine learning models can predict which patients are at a high risk of readmission within 30 days following hip and knee arthroplasty procedures on the basis of notes in EHRs with reasonable discriminative power. Following further validation and empirical demonstration that the models realize predictive performance above that which clinical judgment may provide, such models may be used to build an automated decision support tool to help caretakers identify at-risk patients.

13.
JMIR Mhealth Uhealth ; 8(9): e18142, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32897235

ABSTRACT

BACKGROUND: It is well established that lack of physical activity is detrimental to the overall health of an individual. Modern-day activity trackers enable individuals to monitor their daily activities to meet and maintain targets. This is expected to promote activity encouraging behavior, but the benefits of activity trackers attenuate over time due to waning adherence. One of the key approaches to improving adherence to goals is to motivate individuals to improve on their historic performance metrics. OBJECTIVE: The aim of this work was to build a machine learning model to predict an achievable weekly activity target by considering (1) patterns in the user's activity tracker data in the previous week and (2) behavior and environment characteristics. By setting realistic goals, ones that are neither too easy nor too difficult to achieve, activity tracker users can be encouraged to continue to meet these goals, and at the same time, to find utility in their activity tracker. METHODS: We built a neural network model that prescribes a weekly activity target for an individual that can be realistically achieved. The inputs to the model were user-specific personal, social, and environmental factors, daily step count from the previous 7 days, and an entropy measure that characterized the pattern of daily step count. Data for training and evaluating the machine learning model were collected over a duration of 9 weeks. RESULTS: Of 30 individuals who were enrolled, data from 20 participants were used. The model predicted target daily count with a mean absolute error of 1545 (95% CI 1383-1706) steps for an 8-week period. CONCLUSIONS: Artificial intelligence applied to physical activity data combined with behavioral data can be used to set personalized goals in accordance with the individual's level of activity and thereby improve adherence to a fitness tracker; this could be used to increase engagement with activity trackers. A follow-up prospective study is ongoing to determine the performance of the engagement algorithm.


Subject(s)
Fitness Trackers , Exercise , Female , Humans , Male , Middle Aged , Neural Networks, Computer , Prospective Studies , Retrospective Studies
14.
Ultrasound Med Biol ; 46(4): 972-980, 2020 04.
Article in English | MEDLINE | ID: mdl-32005510

ABSTRACT

In this study, we evaluated the diagnostic accuracy of shear wave elastography (SWE) for differentiating high-risk non-alcoholic steatohepatitis (hrNASH) from non-alcoholic fatty liver and low-risk non-alcoholic steatohepatitis (NASH). Patients with non-alcoholic fatty liver disease scheduled for liver biopsy underwent pre-biopsy SWE. Ten SWE measurements were obtained. Biopsy samples were reviewed using the NASH Clinical Research Network Scoring System and patients with hrNASH were identified. Receiver operating characteristic curves for SWE-based hrNASH diagnosis were charted. One hundred sixteen adult patients underwent liver biopsy at our institution for the evaluation of non-alcoholic fatty liver disease. The area under the receiver operating characteristic curve of SWE for hrNASH diagnosis was 0.73 (95% confidence interval: 0.61-0.84, p < 0.001). The Youden index-based optimal stiffness cutoff value for hrNASH diagnosis was calculated as 8.4 kPa (1.67 m/s), with a sensitivity of 77% and specificity of 66%. SWE may be useful for the detection of NASH patients at risk of long-term liver-specific morbidity and mortality.


Subject(s)
Elasticity Imaging Techniques/methods , Liver/diagnostic imaging , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Biomarkers , Biopsy, Large-Core Needle , Female , Humans , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/diagnosis , Reproducibility of Results , Sensitivity and Specificity
15.
Data Brief ; 27: 104628, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31687441

ABSTRACT

The data in this article provide details about MRI lesion segmentation using K-means and Gaussian Mixture Model-Expectation Maximization (GMM-EM) algorithms. Both K-means and GMM-EM algorithms can segment lesion area from the rest of brain MRI automatically. The performance metrics (accuracy, sensitivity, specificity, false positive rate, misclassification rate) were estimated for the algorithms and there was no significant difference between K-means and GMM-EM. In addition, lesion size does not affect the accuracy and sensitivity for either method.

16.
JMIR Mhealth Uhealth ; 7(10): e11603, 2019 10 24.
Article in English | MEDLINE | ID: mdl-31651405

ABSTRACT

BACKGROUND: It is well reported that tracking physical activity can lead to sustained exercise routines, which can decrease disease risk. However, most stop using trackers within a couple months of initial use. The reasons people stop using activity trackers can be varied and personal. Understanding the reasons for discontinued use could lead to greater acceptance of tracking and more regular exercise engagement. OBJECTIVE: The aim of this study was to determine the individualistic reasons for nonengagement with activity trackers. METHODS: Overweight and obese participants (n=30) were enrolled and allowed to choose an activity tracker of their choice to use for 9 weeks. Questionnaires were administered at the beginning and end of the study to collect data on their technology use, as well as social, physiological, and psychological attributes that may influence tracker use. Closeout interviews were also conducted to further identify individual influencers and attributes. In addition, daily steps were collected from the activity tracker. RESULTS: The results of the study indicate that participants typically valued the knowledge of their activity level the activity tracker provided, but it was not a sufficient motivator to overcome personal barriers to maintain or increase exercise engagement. Participants identified as extrinsically motivated were more influenced by wearing an activity tracker than those who were intrinsically motivated. During the study, participants who reported either owning multiple technology devices or knowing someone who used multiple devices were more likely to remain engaged with their activity tracker. CONCLUSIONS: This study lays the foundation for developing a smart app that could promote individual engagement with activity trackers.


Subject(s)
Exercise/psychology , Fitness Trackers/standards , Patient Participation/psychology , Adult , Female , Fitness Trackers/statistics & numerical data , Humans , Male , Middle Aged , Motivation , Patient Participation/methods , Patient Participation/statistics & numerical data , Pilot Projects , Surveys and Questionnaires
17.
Sci Rep ; 9(1): 13559, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31537847

ABSTRACT

Current Supplier-Manufacturer (SM) networks are highly complex and susceptible to local and global disruptions, due to connectivity and interdependency among suppliers and manufacturers. Resiliency of supply chains is critical for organizations to remain operational in the face of disruptive events. Existing quantitative analyses oversimplify the mutualistic nature of SM networks, in which failure of individual entities affects not only the directly connected entities but also those connected indirectly. In this work we investigate resiliency of SM networks using the quantitative methods employed to study mutualistic ecological systems. Much like in ecological systems, catastrophic failures of SM networks are difficult to predict due to high dimensionality of their interactive space. To address this, first we create a bipartite representation and generate a multidimensional nonlinear model that captures the dynamics of a SM network. We transform the multidimensional model into a two-dimensional model without sacrificing the model's ability to predict the point of collapse. We extensively validate the model using real-world global automotive SM networks. We observe that the resiliency of a SM network depends on both the network structure and parameters. The current work offers a means for designing resilient supply chains that can remain robust to local and global perturbations.

18.
JMIR Diabetes ; 4(3): e12905, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31464196

ABSTRACT

BACKGROUND: Type 1 diabetes mellitus (T1DM) is characterized by chronic insulin deficiency and consequent hyperglycemia. Patients with T1DM require long-term exogenous insulin therapy to regulate blood glucose levels and prevent the long-term complications of the disease. Currently, there are no effective algorithms that consider the unique characteristics of T1DM patients to automatically recommend personalized insulin dosage levels. OBJECTIVE: The objective of this study was to develop and validate a general reinforcement learning (RL) framework for the personalized treatment of T1DM using clinical data. METHODS: This research presents a model-free data-driven RL algorithm, namely Q-learning, that recommends insulin doses to regulate the blood glucose level of a T1DM patient, considering his or her state defined by glycated hemoglobin (HbA1c) levels, body mass index, engagement in physical activity, and alcohol usage. In this approach, the RL agent identifies the different states of the patient by exploring the patient's responses when he or she is subjected to varying insulin doses. On the basis of the result of a treatment action at time step t, the RL agent receives a numeric reward, positive or negative. The reward is calculated as a function of the difference between the actual blood glucose level achieved in response to the insulin dose and the targeted HbA1c level. The RL agent was trained on 10 years of clinical data of patients treated at the Mass General Hospital. RESULTS: A total of 87 patients were included in the training set. The mean age of these patients was 53 years, 59% (51/87) were male, 86% (75/87) were white, and 47% (41/87) were married. The performance of the RL agent was evaluated on 60 test cases. RL agent-recommended insulin dosage interval includes the actual dose prescribed by the physician in 53 out of 60 cases (53/60, 88%). CONCLUSIONS: This exploratory study demonstrates that an RL algorithm can be used to recommend personalized insulin doses to achieve adequate glycemic control in patients with T1DM. However, further investigation in a larger sample of patients is needed to confirm these findings.

19.
PLoS One ; 14(7): e0217919, 2019.
Article in English | MEDLINE | ID: mdl-31287818

ABSTRACT

The Complexity-entropy causality plane (CECP) is a parsimonious representation space for time series. It has only two dimensions: normalized permutation entropy ([Formula: see text]) and Jensen-Shannon complexity ([Formula: see text]) of a time series. This two-dimensional representation allows for detection of slow or rapid drifts in the condition of mechanical components monitored through sensor measurements. The CECP representation can be used for both predictive analytics and visual monitoring of changes in component condition. This method requires minimal pre-processing of raw signals. Furthermore, it is insensitive to noise, stationarity, and trends. These desirable properties make CECP a good candidate for machine condition monitoring and fault diagnostics. In this work we study the effectiveness of CECP on three rotary component condition assessment applications. We use CECP representation of vibration signals to differentiate various machine component health conditions for rotary machine components, namely roller bearing and gears. The results confirm that the CECP representation is able to detect, with high accuracy, changes in underlying dynamics of machine component degradation states. From class separability perspective, the CECP representation is able to generate linearly separable classes for the classification of different fault states. This classification performance improves with increasing signal length. For signal length of 16,384 data points, the fault classification accuracy varies from 90% to 100% for bearing applications, and from 85% to 100% for gear applications. We observed that the optimum parameter for CECP representatino depends on the application. For bearing applications we found that embedding dimension D = 4, 5, 6, and embedding delay τ = 1, 2, 3 are suitable for good fault classification. For gear applications we find that embedding dimension D = 4, 5, and embedding delay τ = 1, 5 are suitable for fault classification.


Subject(s)
Diagnosis, Computer-Assisted , Models, Biological , Support Vector Machine , Entropy , Humans
20.
AMIA Jt Summits Transl Sci Proc ; 2019: 533-542, 2019.
Article in English | MEDLINE | ID: mdl-31259008

ABSTRACT

Hypertension is a major risk factor for stroke, cardiovascular disease, and end-stage renal disease, and its prevalence is expected to rise dramatically. Effective hypertension management is thus critical. A particular priority is decreasing the incidence of uncontrolled hypertension. Early identification of patients at risk for uncontrolled hypertension would allow targeted use of personalized, proactive treatments. We develop machine learning models (logistic regression and recurrent neural networks) to stratify patients with respect to the risk of exhibiting uncontrolled hypertension within the coming three-month period. We trained and tested models using EHR data from 14,407 and 3,009 patients, respectively. The best model achieved an AUROC of 0.719, outperforming the simple, competitive baseline of relying prediction based on the last BP measure alone (0.634). Perhaps surprisingly, recurrent neural networks did not outperform a simple logistic regression for this task, suggesting that linear models should be included as strong baselines for predictive tasks using EHR.

SELECTION OF CITATIONS
SEARCH DETAIL
...