Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Biomaterials ; 303: 122381, 2023 12.
Article in English | MEDLINE | ID: mdl-37935073

ABSTRACT

Allergen immunotherapy (AIT) is the only curative treatment for allergic diseases. However, AIT has many disadvantages related to efficiency, safety, long-term duration, and patient compliance. Dendritic cells (DCs) have an important role in antigen-specific tolerance induction; thus, DC-targeting strategies to treat allergies such as glutaraldehyde crosslinked antigen to mannoprotein (MAN) have been established. However, glutaraldehyde crosslinking may reduce the antigen presentation efficiency of DCs. To overcome this, we developed a MAN-coated ovalbumin (OVA) nanoparticle (MDO), which uses intermolecular disulfide bond to crosslink OVA and MAN. MDO effectively targeted DCs resulting in tolerogenic DCs, and promoted higher antigen presentation efficiency by DCs compared with OVA or glutaraldehyde crosslinked nanoparticles. In vitro and in vivo experiments showed that DCs exposed to MDO induced Treg cells. Moreover, MDO had low reactivity with anti-OVA antibodies and did not induce anaphylaxis in allergic mice, demonstrating its high safety profile. In a mouse model of allergic asthma, MDO had significant preventative and therapeutic effects when administered orally or subcutaneously. Therefore, MDO represents a promising new approach for the efficient and safe treatment of allergies.


Subject(s)
Hypersensitivity , Nanoparticles , Humans , Mice , Animals , Mannans , Glutaral , Dendritic Cells , Allergens , Desensitization, Immunologic , Nanoparticles/chemistry , Ovalbumin , Immunotherapy/methods
2.
Commun Biol ; 6(1): 772, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37488344

ABSTRACT

The unremitting emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants necessitates ongoing control measures. Given its rapid spread, the new Omicron subvariant BA.5 requires urgent characterization. Here, we comprehensively analyzed BA.5 with the other Omicron variants BA.1, BA.2, and ancestral B.1.1. Although in vitro growth kinetics of BA.5 was comparable among the Omicron subvariants, BA.5 was much more fusogenic than BA.1 and BA.2. Airway-on-a-chip analysis showed that, among Omicron subvariants, BA.5 had enhanced ability to disrupt the respiratory epithelial and endothelial barriers. Furthermore, in our hamster model, in vivo pathogenicity of BA.5 was slightly higher than that of the other Omicron variants and less than that of ancestral B.1.1. Notably, BA.5 gains efficient virus spread compared with BA.1 and BA.2, leading to prompt immune responses. Our findings suggest that BA.5 has low pathogenicity compared with the ancestral strain but enhanced virus spread /inflammation compared with earlier Omicron subvariants.


Subject(s)
COVID-19 , Animals , Cricetinae , SARS-CoV-2 , Virulence , Inflammation
3.
Cell Rep ; 40(9): 111292, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36044857

ABSTRACT

Cell competition is a process by which unwanted cells are eliminated from tissues. Apical extrusion is one mode whereby normal epithelial cells remove transformed cells, but it remains unclear how this process is mechanically effected. In this study, we show that autophagic and endocytic fluxes are attenuated in RasV12-transformed cells surrounded by normal cells due to lysosomal dysfunction, and that chemical manipulation of lysosomal activity compromises apical extrusion. We further find that RasV12 cells deficient in autophagy initiation machinery are resistant to elimination pressure exerted by normal cells, suggesting that non-degradable autophagic vacuoles are required for cell competition. Moreover, in vivo analysis revealed that autophagy-ablated RasV12 cells are less readily eliminated by cell competition, and remaining transformed cells destroy ductal integrity, leading to chronic pancreatitis. Collectively, our findings illuminate a positive role for autophagy in cell competition and reveal a homeostasis-preserving function of autophagy upon emergence of transformed cells.


Subject(s)
Cell Competition , Vacuoles , Autophagosomes , Autophagy , Epithelial Cells , Lysosomes
4.
Cell Rep ; 40(2): 111078, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35830802

ABSTRACT

In vertebrates, newly emerging transformed cells are often apically extruded from epithelial layers through cell competition with surrounding normal epithelial cells. However, the underlying molecular mechanism remains elusive. Here, using phospho-SILAC screening, we show that phosphorylation of AHNAK2 is elevated in normal cells neighboring RasV12 cells soon after the induction of RasV12 expression, which is mediated by calcium-dependent protein kinase C. In addition, transient upsurges of intracellular calcium, which we call calcium sparks, frequently occur in normal cells neighboring RasV12 cells, which are mediated by mechanosensitive calcium channel TRPC1 upon membrane stretching. Calcium sparks then enhance cell movements of both normal and RasV12 cells through phosphorylation of AHNAK2 and promote apical extrusion. Moreover, comparable calcium sparks positively regulate apical extrusion of RasV12-transformed cells in zebrafish larvae as well. Hence, calcium sparks play a crucial role in the elimination of transformed cells at the early phase of cell competition.


Subject(s)
Calcium Signaling , Zebrafish , Animals , Calcium/metabolism , Cell Movement , Dogs , Epithelial Cells/metabolism , Madin Darby Canine Kidney Cells , Zebrafish/metabolism
5.
Microscopy (Oxf) ; 71(4): 195-205, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35394538

ABSTRACT

A small number of oncogenic mutated cells sporadically arise within the epithelial monolayer. Newly emerging Ras- or Src-transformed epithelial cells are often apically eliminated during competitive interactions between normal and transformed cells. Our recent electron microscopy (EM) analyses revealed that characteristic finger-like membrane protrusions are formed at the interface between normal and RasV12-transformed cells via the cdc42-formin-binding protein 17 (FBP17) pathway, potentially playing a positive role in intercellular recognition during apical extrusion. However, the spatial distribution and ultrastructural characteristics of finger-like protrusions remain unknown. In this study, we performed both X-Y and X-Z EM analyses of finger-like protrusions during the apical extrusion of RasV12-transformed cells. Quantification of the distribution and widths of the protrusions showed comparable results between the X-Y and X-Z sections. Finger-like protrusions were observed throughout the cell boundary between normal and RasV12 cells, except for apicalmost tight junctions. In addition, a non-cell-autonomous reduction in protrusion widths was observed between RasV12 cells and surrounding normal cells under the mix culture condition. In the finger-like protrusions, intercellular adhesions via thin electron-dense plaques were observed, implying that immature and transient forms of desmosomes, adherens junctions or unknown weak adhesions were distributed. Interestingly, unlike RasV12-transformed cells, Src-transformed cells form fewer evident protrusions, and FBP17 in Src cells is dispensable for apical extrusion. Collectively, these results suggest that the dynamic reorganization of intercellular adhesions via finger-like protrusions may positively control cell competition between normal and RasV12-transformed cells. Furthermore, our data indicate a cell context-dependent diversity in the modes of apical extrusion.


Subject(s)
Cell Competition , Cell Transformation, Neoplastic , Cell Transformation, Neoplastic/metabolism , Epithelial Cells , Humans
6.
iScience ; 24(9): 102994, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34485872

ABSTRACT

At the initial stage of carcinogenesis, cell competition often occurs between newly emerging transformed cells and the neighboring normal cells, leading to the elimination of transformed cells from the epithelial layer. For instance, when RasV12-transformed cells are surrounded by normal cells, RasV12 cells are apically extruded from the epithelium. However, the underlying mechanisms of this tumor-suppressive process still remain enigmatic. We first show by electron microscopic analysis that characteristic finger-like membrane protrusions are projected from both normal and RasV12 cells at their interface. In addition, FBP17, a member of the F-BAR proteins, accumulates in RasV12 cells, as well as surrounding normal cells, which plays a positive role in the formation of finger-like protrusions and apical elimination of RasV12 cells. Furthermore, cdc42 acts upstream of these processes. These results suggest that the cdc42/FBP17 pathway is a crucial trigger of cell competition, inducing "protrusion to protrusion response" between normal and RasV12-transformed cells.

7.
Curr Biol ; 31(18): 3984-3995.e5, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34314674

ABSTRACT

At the initial stage of carcinogenesis, newly emerging transformed cells are often eliminated from epithelial layers via cell competition with the surrounding normal cells. For instance, when surrounded by normal cells, oncoprotein RasV12-transformed cells are extruded into the apical lumen of epithelia. During cancer development, multiple oncogenic mutations accumulate within epithelial tissues. However, it remains elusive whether and how cell competition is also involved in this process. In this study, using a mammalian cell culture model system, we have investigated what happens upon the consecutive mutations of Ras and tumor suppressor protein Scribble. When Ras mutation occurs under the Scribble-knockdown background, apical extrusion of Scribble/Ras double-mutant cells is strongly diminished. In addition, at the boundary with Scribble/Ras cells, Scribble-knockdown cells frequently undergo apoptosis and are actively engulfed by the neighboring Scribble/Ras cells. The comparable apoptosis and engulfment phenotypes are also observed in Drosophila epithelial tissues between Scribble/Ras double-mutant and Scribble single-mutant cells. Furthermore, mitochondrial membrane potential is enhanced in Scribble/Ras cells, causing the increased mitochondrial reactive oxygen species (ROS). Suppression of mitochondrial membrane potential or ROS production diminishes apoptosis and engulfment of the surrounding Scribble-knockdown cells, indicating that mitochondrial metabolism plays a key role in the competitive interaction between double- and single-mutant cells. Moreover, mTOR (mechanistic target of rapamycin kinase) acts downstream of these processes. These results imply that sequential oncogenic mutations can profoundly influence cell competition, a transition from loser to winner. Further studies would open new avenues for cell competition-based cancer treatment, thereby blocking clonal expansion of more malignant populations within tumors.


Subject(s)
Cell Competition , Drosophila , Animals , Apoptosis , Cell Competition/genetics , Drosophila/genetics , Epithelium , Mammals , Mutation
8.
Curr Biol ; 31(14): 3086-3097.e7, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34087104

ABSTRACT

At the early stage of cancer development, oncogenic mutations often cause multilayered epithelial structures. However, the underlying molecular mechanism still remains enigmatic. By performing a series of screenings targeting plasma membrane proteins, we have found that collagen XVII (COL17A1) and CD44 accumulate in RasV12-, Src-, or ErbB2-transformed epithelial cells. In addition, the expression of COL17A1 and CD44 is also regulated by cell density and upon apical cell extrusion. We further demonstrate that the expression of COL17A1 and CD44 is profoundly upregulated at the upper layers of multilayered, transformed epithelia in vitro and in vivo. The accumulated COL17A1 and CD44 suppress mitochondrial membrane potential and reactive oxygen species (ROS) production. The diminished intracellular ROS level then promotes resistance against ferroptosis-mediated cell death upon cell extrusion, thereby positively regulating the formation of multilayered structures. To further understand the functional role of COL17A1, we performed comprehensive metabolome analysis and compared intracellular metabolites between RasV12 and COL17A1-knockout RasV12 cells. The data imply that COL17A1 regulates the metabolic pathway from the GABA shunt to mitochondrial complex I through succinate, thereby suppressing the ROS production. Moreover, we demonstrate that CD44 regulates membrane accumulation of COL17A1 in multilayered structures. These results suggest that CD44 and COL17A1 are crucial regulators for the clonal expansion of transformed cells within multilayered epithelia, thus being potential targets for early diagnosis and preventive treatment for precancerous lesions.


Subject(s)
Cell Transformation, Neoplastic , Epithelium/growth & development , Hyaluronan Receptors/metabolism , Non-Fibrillar Collagens/metabolism , Animals , Cell Line , Cell Transformation, Neoplastic/genetics , Dogs , Ferroptosis , Humans , Madin Darby Canine Kidney Cells , Membrane Potential, Mitochondrial , Mice , Reactive Oxygen Species
9.
Genes Cells ; 23(11): 974-981, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30175422

ABSTRACT

At the initial stage of carcinogenesis, transformation occurs in single cells within the epithelium. Recent studies have revealed that the newly emerging transformed cells are often apically eliminated from epithelial tissues. However, the underlying molecular mechanisms of this cancer preventive phenomenon still remain elusive. In this study, we first demonstrate that myosin-II accumulates in Src-transformed cells when they are surrounded by normal epithelial cells. Knock-down of the heavy chains of myosin-II substantially diminishes apical extrusion of Src cells, suggesting that accumulated myosin-II positively regulates the apical elimination of transformed cells. Furthermore, we have identified ß-spectrin as a myosin-II-binding protein under the coculture of normal and Src-transformed epithelial cells. ß-spectrin is also accumulated in Src cells that are surrounded by normal cells, and the ß-spectrin accumulation is regulated by myosin-II. Moreover, knock-down of ß-spectrin significantly suppresses apical extrusion of Src cells. Collectively, these results indicate that accumulation of the myosin-II-spectrin complex plays a positive role in apical extrusion of Src-transformed epithelial cells. Further elucidation of the molecular mechanisms of apical extrusion would lead to the establishment of a novel type of cancer preventive medicine.


Subject(s)
Actin Cytoskeleton/metabolism , Cell Transformation, Neoplastic/pathology , Epithelial Cells/pathology , Myosin Type II/metabolism , Oncogene Protein pp60(v-src)/metabolism , Spectrin/metabolism , Animals , Cell Communication , Cell Transformation, Neoplastic/metabolism , Cells, Cultured , Dogs , Epithelial Cells/metabolism , Signal Transduction
10.
FEBS Lett ; 591(20): 3296-3309, 2017 10.
Article in English | MEDLINE | ID: mdl-28889652

ABSTRACT

The molecular mechanism that governs cytoskeleton-membrane interaction during animal cytokinesis remains elusive. Here, we investigated the dynamics and functions of ERM (Ezrin/Radixin/Moesin) proteins during cytokinesis in human cultured cells. We found that ezrin is recruited to the cleavage furrow through its membrane-associated domain in a cholesterol-dependent but largely Rho-independent manner. While ERMs are dispensable for furrow ingression, they play a pivotal role in contractile activity of the polar cortex. Notably, when anillin and supervillin are codepleted, ERMs increasingly accumulate at the cleavage furrow and substantially contribute to the furrow ingression. These results reveal a supportive role of ERMs in cortical activities during cytokinesis, and also provide insight into the selective mechanism that preferentially associates cytokinesis-relevant proteins with the division site.


Subject(s)
Actin Cytoskeleton/metabolism , Cell Membrane/metabolism , Cytokinesis/genetics , Cytoskeletal Proteins/genetics , Membrane Proteins/genetics , Microfilament Proteins/genetics , Actin Cytoskeleton/ultrastructure , Cell Line, Transformed , Cell Membrane/ultrastructure , Cytoskeletal Proteins/metabolism , Gene Expression Regulation , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Luciferases/genetics , Luciferases/metabolism , Membrane Proteins/metabolism , Microfilament Proteins/metabolism , Molecular Dynamics Simulation , Signal Transduction , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism
11.
Nat Cell Biol ; 19(5): 530-541, 2017 May.
Article in English | MEDLINE | ID: mdl-28414314

ABSTRACT

Recent studies have revealed that newly emerging transformed cells are often apically extruded from epithelial tissues. During this process, normal epithelial cells can recognize and actively eliminate transformed cells, a process called epithelial defence against cancer (EDAC). Here, we show that mitochondrial membrane potential is diminished in RasV12-transformed cells when they are surrounded by normal cells. In addition, glucose uptake is elevated, leading to higher lactate production. The mitochondrial dysfunction is driven by upregulation of pyruvate dehydrogenase kinase 4 (PDK4), which positively regulates elimination of RasV12-transformed cells. Furthermore, EDAC from the surrounding normal cells, involving filamin, drives the Warburg-effect-like metabolic alteration. Moreover, using a cell-competition mouse model, we demonstrate that PDK-mediated metabolic changes promote the elimination of RasV12-transformed cells from intestinal epithelia. These data indicate that non-cell-autonomous metabolic modulation is a crucial regulator for cell competition, shedding light on the unexplored events at the initial stage of carcinogenesis.


Subject(s)
Cell Communication , Cell Transformation, Neoplastic/metabolism , Energy Metabolism , Epithelial Cells/metabolism , Animals , Cell Line, Transformed , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Coculture Techniques , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Dogs , Female , Genes, ras , Glucose/metabolism , Glycolysis , Lactic Acid/metabolism , Madin Darby Canine Kidney Cells , Male , Membrane Potential, Mitochondrial , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , RNA Interference , Signal Transduction , Tissue Culture Techniques , Transfection
12.
Mol Biol Cell ; 27(5): 812-27, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26764096

ABSTRACT

During anaphase, distinct populations of microtubules (MTs) form by either centrosome-dependent or augmin-dependent nucleation. It remains largely unknown whether these different MT populations contribute distinct functions to cytokinesis. Here we show that augmin-dependent MTs are required for the progression of both furrow ingression and abscission. Augmin depletion reduced the accumulation of anillin, a contractile ring regulator at the cell equator, yet centrosomal MTs were sufficient to mediate RhoA activation at the furrow. This defect in contractile ring organization, combined with incomplete spindle pole separation during anaphase, led to impaired furrow ingression. During the late stages of cytokinesis, astral MTs formed bundles in the intercellular bridge, but these failed to assemble a focused midbody structure and did not establish tight linkage to the plasma membrane, resulting in furrow regression. Thus augmin-dependent acentrosomal MTs and centrosomal MTs contribute to nonredundant targeting mechanisms of different cytokinesis factors, which are required for the formation of a functional contractile ring and midbody.


Subject(s)
Anaphase/physiology , Cell Cycle Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Spindle Apparatus/physiology , Aniline Compounds/metabolism , Cell Cycle Proteins/genetics , Chromosome Segregation , Cytokinesis , HeLa Cells , Humans , Microtubule-Associated Proteins/genetics , Microtubules/genetics , Spindle Apparatus/ultrastructure , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism
13.
J Cell Biol ; 202(4): 623-36, 2013 Aug 19.
Article in English | MEDLINE | ID: mdl-23960144

ABSTRACT

The central spindle is built during anaphase by coupling antiparallel microtubules (MTs) at a central overlap zone, which provides a signaling scaffold for the regulation of cytokinesis. The mechanisms underlying central spindle morphogenesis are still poorly understood. In this paper, we show that the MT depolymerase Kif2A controls the length and alignment of central spindle MTs through depolymerization at their minus ends. The distribution of Kif2A was limited to the distal ends of the central spindle through Aurora B-dependent phosphorylation and exclusion from the spindle midzone. Overactivation or inhibition of Kif2A affected interchromosomal MT length and disorganized the central spindle, resulting in uncoordinated cell division. Experimental data and model simulations suggest that the steady-state length of the central spindle and its symmetric position between segregating chromosomes are predominantly determined by the Aurora B activity gradient. On the basis of these results, we propose a robust self-organization mechanism for central spindle formation.


Subject(s)
Anaphase , Kinesins/metabolism , Microtubules/metabolism , Protein Serine-Threonine Kinases/metabolism , Spindle Apparatus/metabolism , Animals , Aurora Kinase B , Aurora Kinases , Cells, Cultured , HeLa Cells , Humans , Spodoptera
14.
J Cell Biol ; 202(1): 25-33, 2013 Jul 08.
Article in English | MEDLINE | ID: mdl-23816620

ABSTRACT

The formation of a functional spindle requires microtubule (MT) nucleation from within the spindle, which depends on augmin. How augmin contributes to MT formation and organization is not known because augmin-dependent MTs have never been specifically visualized. In this paper, we identify augmin-dependent MTs and their connections to other MTs by electron tomography and 3D modeling. In metaphase spindles of human cells, the minus ends of MTs were located both around the centriole and in the body of the spindle. When augmin was knocked down, the latter population of MTs was significantly reduced. In control cells, we identified connections between the wall of one MT and the minus end of a neighboring MT. Interestingly, the connected MTs were nearly parallel, unlike other examples of end-wall connections between cytoskeletal polymers. Our observations support the concept of augmin-dependent MT nucleation at the walls of existing spindle MTs. Furthermore, they suggest a mechanism for maintaining polarized MT organization, even when noncentrosomal MT initiation is widespread.


Subject(s)
Microtubule-Associated Proteins/chemistry , Microtubules/chemistry , Spindle Apparatus/chemistry , Cell Line, Tumor , Centrioles/chemistry , Electron Microscope Tomography , Humans , Imaging, Three-Dimensional , Metaphase , Microtubule-Associated Proteins/genetics , Polymerization , Protein Binding , RNA Interference , Spindle Apparatus/genetics , Static Electricity , Tubulin/chemistry , Tubulin/genetics
15.
J Cell Biol ; 178(5): 765-71, 2007 Aug 27.
Article in English | MEDLINE | ID: mdl-17724118

ABSTRACT

The contractile ring, which is required for cytokinesis in animal and yeast cells, consists mainly of actin filaments. Here, we investigate the directionality of the filaments in fission yeast using myosin S1 decoration and electron microscopy. The contractile ring is composed of around 1,000 to 2,000 filaments each around 0.6 mum in length. During the early stages of cytokinesis, the ring consists of two semicircular populations of parallel filaments of opposite directionality. At later stages, before contraction, the ring filaments show mixed directionality. We consider that the ring is initially assembled from a single site in the division plane and that filaments subsequently rearrange before contraction initiates.


Subject(s)
Actins , Cytoskeleton , Schizosaccharomyces , Actins/chemistry , Actins/metabolism , Actins/ultrastructure , Cytoskeleton/metabolism , Cytoskeleton/ultrastructure , Schizosaccharomyces/cytology , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/ultrastructure
16.
Nat Cell Biol ; 7(9): 916-7, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16136186

ABSTRACT

Longitudinal F-actin cables are thought to be important for transporting materials for polarized cell growth in fission yeast. We show that most F-actin in the cables is oriented such that the barbed end faces the nearest cell tip during interphase; however, this directionality is reversed during mitosis. These orientations of F-actin ensure proper transport of materials to growing sites during these cell-cycle stages.


Subject(s)
Actins/metabolism , Cell Cycle/physiology , Cell Polarity/physiology , Mitosis/physiology , Schizosaccharomyces/physiology , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/ultrastructure , Actins/ultrastructure , Cell Enlargement , Microscopy, Electron, Transmission , Myosins/metabolism , Protein Structure, Tertiary/physiology , Protein Transport/physiology , Schizosaccharomyces/metabolism , Schizosaccharomyces/ultrastructure
17.
J Electron Microsc (Tokyo) ; 52(2): 237-42, 2003.
Article in English | MEDLINE | ID: mdl-12868594

ABSTRACT

The yeast cell walls of the budding yeast Saccharomyces cerevisiae are well studied and the results show the existence of a framework composed of beta-1,3-glucan. It is reported that the cell wall of the fission yeast Schizosaccharomyces pombe has different components and our analysis by 13C-nuclear magnetic resonance (NMR) spectroscopy also showed there is alpha-1,3-glucan in its cell wall. To refine our understanding of the architecture of the yeast cell wall, we re-examined the cell wall glucans of S. pombe by NMR spectroscopy and prepared antibody against alpha-1,3-glucan, which is a characteristic component of this yeast. By the competitive enzyme-linked immunosorbent assay (ELISA) system, specificity of the antibody was restricted to alpha-1,3-glucan, which did not take a highly ordered structure. We analysed the localization of the cell wall glucans by immunoelectron microscopy. Transmission electron microscope (TEM) images showed that most of the alpha-1,3-glucan was along the cell membrane and appeared to enclose the cytoplasm, supporting previous reports that this glucan is synthesized on the cell membrane.


Subject(s)
Glucans/analysis , Schizosaccharomyces/chemistry , Antibodies, Monoclonal , Cell Wall/chemistry , Cell Wall/ultrastructure , Freezing , Glucans/chemistry , Glucans/isolation & purification , Magnetic Resonance Spectroscopy , Microscopy, Electron , Pressure , Schizosaccharomyces/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...