Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 12: 766406, 2021.
Article in English | MEDLINE | ID: mdl-34803710

ABSTRACT

Snakebites are one of the major causes of death and long-term disability in the developing countries due to the presence of various bioactive peptides and proteins in snake venom. In Japan, the venom of the habu snake (Protobothrops flavoviridis) causes severe permanent damage due to its myonecrotic toxins. Antivenom immunoglobulins are an effective therapy for snakebites, and antivenom was recently developed with effective suppressive activity against myonecrosis induced by snake venom. To compare the properties of an antivenom having anti-myonecrotic activity with those of conventional antivenom with no anti-myonecrotic activity, this study applied focused proteomics analysis of habu venom proteins using 2D gel electrophoresis. As a target protein for antivenom immunoglobulins with anti-myonecrotic activity, we identified a thrombin-like serine protease, TLSP2 (TLf2), which was an inactive proteolytic isoform due to the replacement of the active site, His43 with Arg. Additionally, we identified the unique properties and a novel synergistic function of pseudoenzyme TLf2 as a myonecrosis-enhancing factor. To our knowledge, this is the first report of a function of a catalytically inactive snake serine protease.

2.
Sci Rep ; 9(1): 2330, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30787342

ABSTRACT

Phospholipase A2 (PLA2) is one of the representative toxic components of snake venom. PLA2s are categorized into several subgroups according to the amino acid at position 49, which comprises either Asp49, Lys49, Arg49 or Ser49. Previous studies suggested that the Lys49-PLA2 assembles into an extremely stable dimer. Although the behavior on Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under reducing or non-reducing conditions suggested the presence of intermolecular disulfide bonds, these bonds were not observed in the crystal structure of Lys49-PLA2. The reason for this discrepancy between the crystal structure and SDS-PAGE of Lys49-PLA2 remains unknown. In this study, we analyzed a Lys49-PLA2 homologue from Protobothrops flavoviridis (PflLys49-PLA2 BPII), by biophysical analyses including X-ray crystallography, SDS-PAGE, native-mass spectrometry, and analytical ultracentrifugation. The results demonstrated that PflLys49-PLA2 BPII spontaneously oligomerized in the presence of SDS, which is one of the strongest protein denaturants.


Subject(s)
Crotalid Venoms/enzymology , Lysine/chemistry , Phospholipases A2/chemistry , Protein Multimerization , Animals , Bothrops , Crystallography, X-Ray , Electrophoresis, Polyacrylamide Gel , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...