Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 677: 13-19, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37541087

ABSTRACT

Statins are cholesterol-lowering drugs that have exhibited potential as cancer therapeutic agents. However, as some cancer cells are resistant to statins, broadening an anticancer spectrum of statins is desirable. The upregulated expression of the statin target enzyme, 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase (HMGCR), in statin-treated cancer cells is a well-known mechanism of statin resistance, which can be counteracted by the downregulation of HMGCR gene expression, or degradation of the HMGCR protein. However, the mechanism by which HMGCR degradation influences the anticancer effects of statins remain unreported. We tested the effect of the HMGCR degrader compound SR-12813 at a concentration that did not affect the growth of eight diverse tumor cell lines. Combined treatment with atorvastatin and a low concentration of SR-12813 led to lowering of increased HMGCR expression, and augmented the cytostatic effect of atorvastatin in both statin-resistant and -sensitive cancer cells compared with that of atorvastatin treatment alone. Dual-targeting of HMGCR using statins and SR-12813 (or similar compounds) could provide an improved anticancer therapeutic approach.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Atorvastatin/pharmacology , Up-Regulation , Hydroxymethylglutaryl CoA Reductases/genetics , Hydroxymethylglutaryl CoA Reductases/metabolism
2.
J Biosci Bioeng ; 131(2): 147-152, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33132038

ABSTRACT

Myxococcus xanthus generates polyphosphates (polyPs) during starvation and forms fruiting bodies through the activity of polyphosphate kinase (Ppk). M. xanthus polyP:AMP phosphotransferase (Pap), a class II Ppk2, catalyzes the transfer of the terminal phosphate from polyP to AMP to yield ADP, but its enzymatic properties have not been investigated in detail. In this study, we found that Pap was activated by Mn2+ or Mg2+ and required higher concentrations of these ions in reactions with longer polyPs to demonstrate maximum activity. The Km of Pap for polyP700-1000 was significantly lower than that for shorter polyPs, but the highest catalytic constant (kcat) was observed for polyP60-70. When Pap was incubated with polyP60-70 and AMP for 3 h, it first generated ADP and then gradually produced ATP, suggesting that M. xanthus Pap also has polyP:ADP phosphotransferase activity similar to that of class III Ppk2 enzymes. During starvation, the specific activity of Pap in M. xanthus was increased by 2.3-2.4-fold at days 1 and 2 of incubation. In addition, recombinant Pap in combination with M. xanthus recombinant enzymes Ppk1 or adenylate kinase (AdkA) could generate ATP from AMP and polyP60-70. These results suggest a functional role of Pap during M. xanthus starvation, when it might act in cooperation with Ppk1 and/or AdkA to produce ATP from AMP, ADP, and polyP.


Subject(s)
Biocatalysis , Myxococcus xanthus/enzymology , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Phosphorylation
3.
J Biochem ; 165(4): 379-385, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30535229

ABSTRACT

Adenylate kinase (Adk) plays a critical role in energy metabolism and adaptation of bacteria to environmental stresses. We have previously shown that Myxococcus xanthus expresses polyphosphate kinase 1 (Ppk1) that also has Adk activity in the absence of polyphosphates. In this study, we investigated the Adk activity of the other two M. xanthus enzymes, AdkA and AdkB. The activity of AdkA was increased by dithiothreitol (DTT), which also enhanced enzyme stability. Site-directed mutagenesis of three cysteine residues (C130, C150, and C153) present in the LID domain of AdkA revealed that the Adk activity and stability of C150S and C153S mutants were not affected by DTT addition, suggesting formation of a disulfide bond between C150 and C153 in AdkA. The Km of AdkA for AMP was 8 and 17 times lower than that for ADP and ATP, respectively. AdkB is a polyphosphate kinase 2 (Ppk2) homolog lacking the Ppk2 middle region and, consequently, Ppk activity. According to our analysis, AdkB also had Adk activity and its affinity for substrates was higher than that of AdkA. Thus, M. xanthus expresses three enzymes, AdkA, AdkB, and Ppk1, with Adk activity, which may function to support energy metabolism of the bacteria in different environmental conditions.


Subject(s)
Adenylate Kinase , Bacterial Proteins , Energy Metabolism/physiology , Myxococcus xanthus , Adenylate Kinase/genetics , Adenylate Kinase/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Myxococcus xanthus/enzymology , Myxococcus xanthus/genetics , Substrate Specificity/physiology
4.
Curr Microbiol ; 75(4): 379-385, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29127456

ABSTRACT

Polyphosphate kinase 1 (Ppk1) catalyzes reverse transfer of the terminal phosphate from ATP to form polyphosphate (polyP) and from polyP to form ATP, and is responsible for the synthesis of most of cellular polyPs. When Ppk1 from Myxococcus xanthus was incubated with 0.2 mM polyP60-70 and 1 mM ATP or ADP, the rate of ATP synthesis was approximately 1.5-fold higher than that of polyP synthesis. If in the same reaction the proportion of ADP in the ATP/ADP mixture exceeded one-third, the equilibrium shifted to ATP synthesis, suggesting that M. xanthus Ppk1 preferentially catalyzed ATP formation. At the same time, GTP and GDP were not recognized as substrates by Ppk1. In the absence of polyP, Ppk1 generated ATP and AMP from ADP, and ADP from ATP and AMP, suggesting that the enzyme catalyzed the transfer of a phosphate group between ADP molecules yielding ATP and AMP, thus exhibiting adenylate kinase activity.


Subject(s)
Bacterial Proteins/metabolism , Myxococcus xanthus/enzymology , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biocatalysis , Kinetics , Myxococcus xanthus/chemistry , Myxococcus xanthus/genetics , Phosphotransferases (Phosphate Group Acceptor)/chemistry , Phosphotransferases (Phosphate Group Acceptor)/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...