Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 24(5): 996-1029, 2024 02 27.
Article in English | MEDLINE | ID: mdl-38239102

ABSTRACT

A molecular robot, which is a system comprised of one or more molecular machines and computers, can execute sophisticated tasks in many fields that span from nanomedicine to green nanotechnology. The core parts of molecular robots are fairly consistent from system to system and always include (i) a body to encapsulate molecular machines, (ii) sensors to capture signals, (iii) computers to make decisions, and (iv) actuators to perform tasks. This review aims to provide an overview of approaches and considerations to develop molecular robots. We first introduce the basic technologies required for constructing the core parts of molecular robots, describe the recent progress towards achieving higher functionality, and subsequently discuss the current challenges and outlook. We also highlight the applications of molecular robots in sensing biomarkers, signal communications with living cells, and conversion of energy. Although molecular robots are still in their infancy, they will unquestionably initiate massive change in biomedical and environmental technology in the not too distant future.


Subject(s)
Robotics , Nanotechnology , Technology , Lipids
2.
Anal Chem ; 95(39): 14675-14685, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37675494

ABSTRACT

This paper describes a strategy for simultaneous recognition of over- and under-expressed microRNAs (miRNAs) using the method of signal classification-based nanopore decoding. MiRNA has attracted attention as a promising biomarker for cancer diagnosis owing to its cancer-type-specific expression patterns. While nanopore technology has emerged as a simple and label-free method to detect miRNAs and their expression patterns, recognizing patterns involving simultaneous over/under-expression is still challenging due to the inherent working principles. Here, inspired by the sequence design for DNA computation with nanopore decoding, we designed diagnostic DNA probes targeting two individual over/under-expressed miRNAs in the serum of oral squamous cell carcinoma. Through nanopore measurements, our designed probes exhibited characteristic current signals depending on the hybridized miRNA species, which were plotted on the scatter plot of duration versus current blocking ratio. The classified signals reflected the relative abundance of target miRNAs, thereby enabling successful pattern recognition of over/under-expressed miRNAs, even when using clinical samples. We believe that our method paves the way for miRNA-targeting simple diagnosis as a liquid biopsy.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , MicroRNAs , Mouth Neoplasms , Nanopores , Humans , Mouth Neoplasms/diagnosis , Mouth Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...