Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Microsc ; 295(2): 147-176, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38441305

ABSTRACT

This paper reports on the development of an open-source image analysis software 'pipeline' dedicated to petrographic microscopy. Using conventional rock thin sections and images from a standard polarising microscope, the pipeline can classify minerals and subgrains into objects and obtain information about optic-axis orientation. Five metamorphic rocks were chosen to test and illustrate the method. Thin sections were imaged using reflected and cross- and plane-polarised transmitted light. Images were taken at different angles of the polariser and analyser (360° with 10° steps), both with and without the full-lambda plate. The resulting image stacks were analysed with a modular pipeline for optic-axis mapping (POAM). POAM consists of external and internal software packages that register, segment, classify, and interpret the visible light spectra using object-based image analysis (OBIAS). The mapped fields-of-view and grain orientation stereonets of interest are presented in the context of whole-slide images. Two innovations are reported. First, we used hierarchical tree region merging on blended multimodal images to classify individual grains of rock-forming minerals into objects. Second, we assembled a new optical mineralogy algorithm chain that identifies the mineral slow axis orientation. The c-axis orientation results were verified with scanning electron microscopy electron backscattered diffraction (SEM-EBSD) data. For quartz (uniaxial) in a granite mylonite the test yielded excellent correspondence of c-axis azimuth and good agreement for inclination. For orthorhombic orthopyroxene in a deformed garnet harzburgite, POAM produced acceptable results for slow axis azimuth. In addition, the method identified slight anisotropy in garnet that would not be appreciated by traditional microscopy. We propose that our method is ideally suited for two commonly performed tasks in mineralogy. First, for mineral grain classification of entire thin sections scans on blended images to provide automated modal abundance estimates and grain size distribution. Second, for prospective fields of view of interest, POAM can rapidly generate slow axis crystal orientation maps from multiangle image stacks on conventionally prepared thin sections for targeting detailed SEM-EBSD studies.

2.
Nature ; 615(7952): 450-454, 2023 03.
Article in English | MEDLINE | ID: mdl-36922607

ABSTRACT

The ancient stable continents are up to 250 km deep, with roots extending into the diamond stability field1. These cratons owe their mechanical strength to being cool and rigid2, features inherited from extensive melt extraction1,3. The most prominent model for craton formation anticipates dominant melting at relatively shallow depth (50-100 km) above diamond stability4-7, followed by later imbrication to form the deeper roots8,9. Here we present results from thermodynamic and geochemical modelling of melting at sufficiently high temperatures to produce the very magnesian olivine of cratonic roots10. The new closed-system and open-system modelling reproduces the observed cratonic mantle mineral compositions by deep (about 200 km) and very hot melting (≥1,800 °C), obviating the need for shallow melting and stacking. The modelled highly magnesian liquids (komatiites) evolve to Al-enriched and Ti-depleted forms, as observed in the greenstone belts at the fossil surface of cratons11. The paucity of Ti-depleted komatiite12 implies that advanced closed-system isochemical melting (>1,825 °C) was much less common than open-system interaction between deeper liquids and melting of existing refractory mantle. The highly refractory compositions of diamond inclusion minerals could imply preferential diamond growth in the more reducing parts of the cratonic root, depleted by ultra-hot melting in response to heat plumes from a deeper former boundary layer that vanished at the end of the Archaean13.

3.
Geostand Geoanal Res ; 46(4): 735-749, 2022 Dec.
Article in English | MEDLINE | ID: mdl-37067871

ABSTRACT

This new comprehensive in situ mineral-chemical characterisation of the Happy Jack uraninite has discovered additional information regarding matrix effects and trace element homogeneity, relevant to proposals that it could serve as a reference material (RM). On the LA-ICP-MS instrumentation used, there was an absence of discernible matrix effects relative to the silicate glass NIST SRM 610. Lanthanides and Y are found to be very homogeneously distributed in Happy Jack uraninite, Zr, Nb and Ti mass fractions reproducible but only within individual fragments, and other elements still generally heterogeneous. This means that the Happy Jack uraninite can serve as a secondary RM for quality control in studies of natural uraninites. In terms of absolute accuracy and intermediate measurement precision, the Happy Jack uraninite can be used for the homogeneous elements. For elements that are homogeneous within individual fragments only, intermediate measurement precision can still be evaluated, while information values will be obtained for the generally heterogeneous elements. Two distinct groups (high vs. low Zr) were distinguished to exist among different Happy Jack fragments in association with minor variation of REE mass fractions, which possibly explains the observed (heavy) REE discrepancy between in situ laser ablation and bulk solution ICP-MS analyses.

4.
Nat Commun ; 12(1): 1082, 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33597517

ABSTRACT

Peridotites from the thick roots of Archaean cratons are known for their compositional diversity, whose origin remains debated. We report thermodynamic modelling results for reactions between peridotite and ascending mantle melts. Reaction between highly magnesian melt (komatiite) and peridotite leads to orthopyroxene crystallisation, yielding silica-rich harzburgite. By contrast, shallow basalt-peridotite reaction leads to olivine enrichment, producing magnesium-rich dunites that cannot be generated by simple melting. Komatiite is spatially and temporally associated with basalt within Archaean terranes indicating that modest-degree melting co-existed with advanced melting. We envisage a relatively cool mantle that experienced episodic hot upwellings, the two settings could have coexisted if roots of nascent cratons became locally strongly extended. Alternatively, deep refractory silica-rich residues could have been detached from shallower dunitic lithosphere prior to cratonic amalgamation. Regardless, the distinct Archaean melting-reaction environments collectively produced skewed and multi-modal olivine distributions in the cratonic lithosphere and bimodal mafic-ultramafic volcanism at surface.

5.
Interface Focus ; 10(4): 20190140, 2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32642054

ABSTRACT

Deciphering the role-if any-that free oxygen levels played in controlling the timing and tempo of the radiation of complex life is one of the most fundamental questions in Earth and life sciences. Accurately reconstructing Earth's redox history is an essential part of tackling this question. Over the past few decades, there has been a proliferation of research employing geochemical redox proxies in an effort to tell the story of Earth's oxygenation. However, many of these studies, even those considering the same geochemical proxy systems, have led to conflicting interpretations of the timing and intensity of oxygenation events. There are two potential explanations for conflicting redox reconstructions: (i) that free oxygen levels were incredibly dynamic in both time and space or (ii) that collectively, as a community-including the authors of this article-we have frequently studied rocks affected by secondary weathering and alteration (particularly secondary oxidation) while neglecting to address the impact of this alteration on the generated data. There are now multiple case studies that have documented previously overlooked secondary alteration, resolving some of the conflicting constrains regarding redox evolution. Here, an analysis of a large shale geochemistry database reveals significant differences in cerium (Ce) anomalies, a common palaeoredox proxy, between outcrop and drill core samples. This inconsistency provides support for the idea that geochemical data from altered samples are frequently published in the peer-reviewed literature. As individuals and a geochemical community, most of us have been slow to appreciate how pervasive the problem is but there are examples of other communities that have faced and met the challenges raised by such quality control crises. Further evidence of the high potential for alteration of deep-time geochemical samples, and recognition of the manner in which this may lead to spurious results and palaeoenvironmental interpretations, indicate that sample archiving, in publicly accessible collections needs to become a prerequisite for publication of new palaeoredox data. Finally, the geochemical community need to think about ways to implement additional quality control measures to increase the fidelity of palaeoredox proxy work.

6.
Sci Total Environ ; 658: 234-249, 2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30577019

ABSTRACT

Atmospherically-fed Earth surface archives such as ombrotrophic peatlands, lake sediments, and ice consistently show an upward increase in Zn concentrations of hitherto unclear origin. Here, we present a combined stable Zn isotope and trace element (Zn, Cd, Ni, Cu, Cr, V, Ta, Pb) dataset for a historically polluted, near-urban bog (Liffey Head) from the east coast of Ireland. This peat record is compared to an archive from a rural site at the west coast of Ireland (Brackloon Wood). Both archives show a clear near-surface increase in Zn deposition, accompanied by periodic deposition in Cr, Ni, Mo, and V suggesting a co-genetic origin of these elements. In the Liffey Head site, biologic upward distillation of nutrients can be excluded as the origin of the elemental enrichments. The differences in the excess metal ratios between the two sites (e.g., Zn/Cd of 426-1564, east, and 77-106, west) are attributed to a higher contribution from traffic emissions (diesel, petrol) and oil-burning at the near-urban site, and dominant atmospheric influence from solid fossil fuel combustion emissions (e.g., mixed fuel, coal and wood) at the rural site. The Zn isotope composition in the historically-polluted Liffey Head bog evolved from δ66/64ZnJMC-Lyon values of 0.72 ±â€¯0.03‰ in the peat accumulated during the 19th century to lighter ratios (0.18 ±â€¯0.03‰) towards the top of the monolith (i.e., recent). Zinc-isotope ratios are positively correlated with excess metal/Cd ratios and also with 206Pb/207Pb, collectively fingerprinting the gradual change from a mining-dominated to a traffic-dominated atmospheric pollution at the east coast over the past century. A prevalent input, interpreted to represent combustion emissions from diesel engines, is observed for the past 15 years. Combined with trace elements and radiogenic Pb isotopes, the information obtained with the Zn isotope systematics adds towards an in-depth characterisation of the pollution signals.

7.
Sci Total Environ ; 619-620: 1451-1463, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29734621

ABSTRACT

Zinc (Zn) is a micronutrient for organisms and essential for plant growth, therefore knowledge of its elemental cycling in the surface environment is important regarding wider aspects of human nutrition and health. To explore the nature of Zn cycling, we compared its weathering behaviour in a sub-recent regolith versus an ancient laterite profile of the Deccan Traps, India - an area of known soil Zn deficiency. We demonstrate that progressive breakdown of primary minerals and the associated formation of phyllosilicates and iron oxides leads to a depletion in Zn, ultimately resulting in a loss of 80% in lateritic residues. This residue is mainly composed of resistant iron oxides and hydroxides ultimately delivering insufficient amounts of bio-available Zn. Moreover, (sub)-tropical weathering in regions experiencing extended tectonic quiescence (e.g., cratons) further enhance the development of old and deep soil profiles that become deficient in Zn. This situation is clearly revealed by the spatial correlation of the global distribution of laterites, cratons (Africa, India, South America and Australia) and known regions of Zn deficient soils that result in health problems for humans whose diet is derived from such land. We also investigate whether this elemental depletion of Zn is accompanied by isotope fractionation. In the saprolitic horizons of both weathering profiles, compositions of δ66ZnJMC-Lyon lie within the "crustal average" of +0.27±0.07‰ δ66ZnJMC-Lyon. By contrast, soil horizons enriched in secondary oxides show lighter isotope compositions. The isotopic signature of Zn (Δ66Znsample-protolith up to ~ -0.65‰) during the formation of the ferruginous-lateritic weathering profile likely resulted from a combination of biotically- and kinetically-controlled sorption reactions on Fe-oxyhydroxides. Our findings suggest that oxide rich soil types/horizons in (sub)-tropical regions likely exert a control on riverine Zn isotope compositions such that these become heavier than the crustal average. This isotopic behaviour invites a broader study of global soils to test whether light isotope composition alone could serve as an indicator for reduced bioavailability of Zn.

8.
Nat Commun ; 9(1): 326, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29362357

ABSTRACT

Crystals formed prior to a volcanic event can provide evidence of processes leading to and timing of eruptions. Clinopyroxene is common in basaltic to intermediate volcanoes, however, its ability as a recorder of pre-eruptive histories has remained comparatively underexplored. Here we show that novel high-resolution trace element images of clinopyroxene track eruption triggers and timescales at Mount Etna (Sicily, Italy). Chromium (Cr) distribution in clinopyroxene from 1974 to 2014 eruptions reveals punctuated episodes of intrusion of primitive magma at depth. Magma mixing efficiently triggered volcanism (success rate up to 90%), within only 2 weeks of arrival of mafic intrusions. Clinopyroxene zonations distinguish between injections of mafic magma and regular recharges with more evolved magma, which often fail to tip the system to erupt. High Cr zonations can therefore be used to reconstruct past eruptions and inform responses to geophysical signals of volcano unrest, potentially offering an additional approach to volcano hazard monitoring.

9.
Environ Sci Technol ; 46(1): 268-76, 2012 Jan 03.
Article in English | MEDLINE | ID: mdl-22070086

ABSTRACT

An approach using trace elements in particulate matter (PM) to identify the geographic sources of atmospherically transported semivolatile organic contaminants (SOCs) was investigated. Daily samples of PM and SOCs were collected with high-volume air samplers from 16 January to 16 February 2009 at Temple Basin, a remote alpine site in New Zealand's Southern Alps. The most commonly detected pesticides were dieldrin, trans-chlordane, endosulfan I, and chlorpyrifos. Polycyclic aromatic hydrocarbons and polychlorinated biphenyls were also detected. For each sampling day, the relative contribution of PM from regional New Zealand versus long-range Australian sources was determined using trace element profiles and a binary mixing model. The PM approach indicated that endosulfan I, indeno[1,2,3-c,d]pyrene, and benzo[g,h,i]perylene found at Temple Basin were largely of Australian origin. Local wind observations indicated that the chlorpyrifos found at Temple Basin primarily came from the Canterbury Plains in New Zealand.


Subject(s)
Air Pollution/analysis , Air/analysis , Ecosystem , Organic Chemicals/analysis , Particulate Matter/chemistry , Trace Elements/analysis , Australia , Fires , Geography , New Zealand , Pesticides/analysis , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Statistics, Nonparametric , Volatilization , Wind
10.
Environ Pollut ; 158(5): 1615-28, 2010 May.
Article in English | MEDLINE | ID: mdl-20061073

ABSTRACT

Two peat bogs from remote alpine sites in Australia were found to contain detailed and coherent histories of atmospheric metal pollution for Pb, Zn, Cu, Mo, Ag, As, Cd, Sb, Zn, In, Cr, Ni, Tl and V. Dramatic increases in metal deposition in the post-1850 AD portion of the cores coincide with the onset of mining in Australia. Using both Pb isotopes and metals, pollutants were ascribed to the main atmospheric pollution emitting sources in Australia, namely mining and smelting, coal combustion and agriculture. Results imply mining and metal production are the major source of atmospheric metal pollution, although coal combustion may account for up to 30% of metal pollutants. A novel finding of this study is the increase in the otherwise near-constant Y/Ho ratio after 1900 AD. We link this change to widespread and increased application of marine phosphate fertiliser in Australia's main agricultural area (the Murray Darling Basin).


Subject(s)
Agriculture/history , Air Pollutants/analysis , Metals/analysis , Mining/history , Soil Pollutants/analysis , Australia , Environmental Monitoring , History, 15th Century , History, 16th Century , History, 17th Century , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , History, Ancient
11.
Nature ; 458(7239): 750-3, 2009 Apr 09.
Article in English | MEDLINE | ID: mdl-19360085

ABSTRACT

It has been suggested that a decrease in atmospheric methane levels triggered the progressive rise of atmospheric oxygen, the so-called Great Oxidation Event, about 2.4 Gyr ago. Oxidative weathering of terrestrial sulphides, increased oceanic sulphate, and the ecological success of sulphate-reducing microorganisms over methanogens has been proposed as a possible cause for the methane collapse, but this explanation is difficult to reconcile with the rock record. Banded iron formations preserve a history of Precambrian oceanic elemental abundance and can provide insights into our understanding of early microbial life and its influence on the evolution of the Earth system. Here we report a decline in the molar nickel to iron ratio recorded in banded iron formations about 2.7 Gyr ago, which we attribute to a reduced flux of nickel to the oceans, a consequence of cooling upper-mantle temperatures and decreased eruption of nickel-rich ultramafic rocks at the time. We measured nickel partition coefficients between simulated Precambrian sea water and diverse iron hydroxides, and subsequently determined that dissolved nickel concentrations may have reached approximately 400 nM throughout much of the Archaean eon, but dropped below approximately 200 nM by 2.5 Gyr ago and to modern day values ( approximately 9 nM) by approximately 550 Myr ago. Nickel is a key metal cofactor in several enzymes of methanogens and we propose that its decline would have stifled their activity in the ancient oceans and disrupted the supply of biogenic methane. A decline in biogenic methane production therefore could have occurred before increasing environmental oxygenation and not necessarily be related to it. The enzymatic reliance of methanogens on a diminishing supply of volcanic nickel links mantle evolution to the redox state of the atmosphere.


Subject(s)
Euryarchaeota/metabolism , Nickel/analysis , Oxidation-Reduction , Seawater/chemistry , Seawater/microbiology , Atmosphere/chemistry , Geologic Sediments/chemistry , Iron/analysis , Nickel/metabolism , Oceans and Seas
13.
Nature ; 444(7115): E1-2; discussion E2-3, 2006 Nov 02.
Article in English | MEDLINE | ID: mdl-17080032

ABSTRACT

Timescale and the physics of planetary core formation are essential constraints for models of Earth's accretion and early differentiation. Wood and Halliday use the apparent mismatch in core-formation dates determined from tungsten (W) and lead (Pb) chrono-meters to argue for a two-stage core formation, involving an early phase of metal segregation followed by a protracted episode of sulphide melt addition. However, we show here that crust-;mantle Pb isotope systematics do not require diachronous core formation. Our observations indicate that very early (< or = 35 Myr) core formation and planet accretion remain the most plausible scenario.

14.
Philos Trans R Soc Lond B Biol Sci ; 361(1470): 851-67, 2006 Jun 29.
Article in English | MEDLINE | ID: mdl-16754603

ABSTRACT

At greater than 3.7 Gyr, Earth's oldest known supracrustal rocks, comprised dominantly of mafic igneous with less common sedimentary units including banded iron formation (BIF), are exposed in southwest Greenland. Regionally, they were intruded by younger tonalites, and then both were intensely dynamothermally metamorphosed to granulite facies (the highest pressures and temperatures generally encountered in the Earth's crust during metamorphism) in the Archaean and subsequently at lower grades until about 1500 Myr ago. Claims for the first preserved life on Earth have been based on the occurrence of greater than 3.8 Gyr isotopically light C occurring as graphite inclusions within apatite crystals from a 5 m thick purported BIF on the island of Akilia. Detailed geologic mapping and observations there indicate that the banding, first claimed to be depositional, is clearly deformational in origin. Furthermore, the mineralogy of the supposed BIF, being dominated by pyroxene, amphibole and quartz, is unlike well-known BIF from the Isua Greenstone Belt (IGB), but resembles enclosing mafic and ultramafic igneous rocks modified by metasomatism and repeated metamorphic recrystallization. This scenario parsimoniously links the geology, whole-rock geochemistry, 2.7 Gyr single crystal zircon ages in the unit, an approximately 1500 Myr age for apatites that lack any graphite, non-MIF sulphur isotopes in the unit and an inconclusive Fe isotope signature. Although both putative body fossils and carbon-12 enriched isotopes in graphite described at Isua are better explained by abiotic processes, more fruitful targets for examining the earliest stages in the emergence of life remain within greater than 3.7 Gyr IGB, which preserves BIF and other rocks that unambiguously formed at Earth's surface.


Subject(s)
Fossils , Geologic Sediments/microbiology , Geology , Origin of Life , Evolution, Planetary , Geologic Sediments/chemistry , Geological Phenomena , Graphite , Greenland , Isotopes
15.
Nature ; 441(7094): 714-8, 2006 Jun 08.
Article in English | MEDLINE | ID: mdl-16760969

ABSTRACT

The 3,430-million-year-old Strelley Pool Chert (SPC) (Pilbara Craton, Australia) is a sedimentary rock formation containing laminated structures of probable biological origin (stromatolites). Determining the biogenicity of such ancient fossils is the subject of ongoing debate. However, many obstacles to interpretation of the fossils are overcome in the SPC because of the broad extent, excellent preservation and morphological variety of its stromatolitic outcrops--which provide comprehensive palaeontological information on a scale exceeding other rocks of such age. Here we present a multi-kilometre-scale palaeontological and palaeoenvironmental study of the SPC, in which we identify seven stromatolite morphotypes--many previously undiscovered--in different parts of a peritidal carbonate platform. We undertake the first morphotype-specific analysis of the structures within their palaeoenvironment and refute contemporary abiogenic hypotheses for their formation. Finally, we argue that the diversity, complexity and environmental associations of the stromatolites describe patterns that--in similar settings throughout Earth's history--reflect the presence of organisms.


Subject(s)
Fossils , Geologic Sediments/microbiology , Models, Biological , Australia , Carbonates/chemistry , Geologic Sediments/chemistry , History, Ancient , Paleontology , Seawater , Time Factors
16.
Rapid Commun Mass Spectrom ; 18(22): 2765-9, 2004.
Article in English | MEDLINE | ID: mdl-15499660

ABSTRACT

A new, fast, continuous flow technique is described for the simultaneous determination of delta33S and delta34S using SO masses 48, 49 and 50. Analysis time is approximately 5 min/sample with measurement precision and accuracy better than +/-0.3 per thousand. This technique, which has been set up using IAEA Ag2S standards S-1, S-2 and S-3, allows for the fast determination of mass-dependent or mass-independent fractionation (MIF) effects in sulfide, organic sulfur samples and possibly sulfate. Small sample sizes can be analysed directly, without chemical pre-treatment. Robustness of the technique for natural versus artificial standards was demonstrated by analysis of a Canon Diablo troilite, which gave a delta33S of 0.04 per thousand and a delta34S of -0.06 per thousand compared to the values obtained for S-1 of 0.07 per thousand and -0.20 per thousand, respectively. Two pyrite samples from a banded-iron formation from the 3710 Ma Isua Greenstone Belt were analysed using this technique and yielded MIF (Delta33S of 2.45 and 3.31 per thousand) comparable to pyrite previously analysed by secondary ion probe.


Subject(s)
Environmental Monitoring/methods , Mass Spectrometry/methods , Sulfur Isotopes/analysis , Sulfur/analysis , Sulfuric Acid Esters/analysis , Reproducibility of Results
17.
Nature ; 418(6896): 403-5, 2002 Jul 25.
Article in English | MEDLINE | ID: mdl-12140554

ABSTRACT

The 'Late Heavy Bombardment' was a phase in the impact history of the Moon that occurred 3.8 4.0 Gyr ago, when the lunar basins with known dates were formed. But no record of this event has yet been reported from the few surviving rocks of this age on the Earth. Here we report tungsten isotope anomalies, based on the (182)Hf (182)W system (half-life of 9 Myr), in metamorphosed sedimentary rocks from the 3.7 3.8-Gyr-old Isua greenstone belt of West Greenland and closely related rocks from northern Labrador, Canada. As it is difficult to conceive of a mechanism by which tungsten isotope heterogeneities could have been preserved in the Earth's dynamic crust mantle environment from a time when short-lived (182)Hf was still present, we conclude that the metamorphosed sediments contain a component derived from meteorites.

18.
Anal Chem ; 74(1): 67-73, 2002 Jan 01.
Article in English | MEDLINE | ID: mdl-11795820

ABSTRACT

A combined procedure for separating Lu, Hf, Sm, Nd, and rare earth elements (REEs) from a single sample digest is presented. The procedure consists of the following five steps: (1) sample dissolution via sodium peroxide sintering; (2) separation of the high field strength elements from the REEs and other matrix elements by a HF-free anion-exchange column procedure; (3) purification of Hf on a cation-exchange resin; (4) separation of REEs from other matrix elements by cation exchange; (5) Lu, Sm, and Nd separation from the other REEs by reversed-phase ion chromatography. Analytical reproducibilities of Sm-Nd and Lu-Hf isotope systematics are demonstrated for standard solutions and international rock reference materials. Results show overall good reproducibilities for Sm-Nd systematics independent of the rock type analyzed. For the Lu-Hf systematics, the reproducibility of the parent/daughter ratio is much better for JB-1 (basalt) than for two analyzed felsic crustal rocks (DR-N and an Archaean granitoid). It is demonstrated that this poorer reproducibility of the Lu/Hf ratio is truly caused by sample heterogeneity; thus, results are geologically reasonable.

SELECTION OF CITATIONS
SEARCH DETAIL
...