Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(6): e0304112, 2024.
Article in English | MEDLINE | ID: mdl-38900829

ABSTRACT

The development and application of functional feed ingredients represents a great opportunity to advance fish growth and health, boost the immune system, and induce physiological benefits beyond those provided by traditional feeds. In the present study, we looked at the feasibility of in vitro methods for screening the qualities of functional feed ingredients using the fish cell line RTgill-W1, which has never been used in fish nutrition, and the culture of Paramoeba perurans. Five functional feed ingredients (arginine, ß-glucan, vitamin C, and two phytogenic feed additives) were selected to investigate their effects on cell viability and reactive oxygen species production. Three of the selected ingredients (arginine and two phytogenic feed additives) were additionally tested to assess their potential amoebicidal activity. As these functional ingredients are the core of a commercially available feed (Protec Gill, Skretting AS), their beneficial effects were further assessed in a field trial in fish affected by complex gill disease. Here, the analyzed parameters included the evaluation of macroscopic and histopathological gill conditions, pathogen detections, and analyses of plasma parameters. RTgill-W1 cell line assays were a good tool for screening functional ingredients and provided information about the optimal ingredient concentration ranges, which can be helpful for adjusting the concentrations in future feed diets. Through the culture of P. perurans, the tested ingredients showed a clear amoebicidal activity, suggesting that their inclusions in dietary supplements could be a viable way to prevent microbial infections. A three-week period of feeding Protec Gill slowed the disease progression, by reducing the pathogen load and significantly improving gill tissue conditions, as revealed by histological evaluation. The use of diets containing selected functional ingredients may be a feasible strategy for preventing or mitigating the increasingly common gill diseases, particularly in cases of complex gill disease, as documented in this study.


Subject(s)
Animal Feed , Fish Diseases , Gills , Salmo salar , Animals , Animal Feed/analysis , Fish Diseases/prevention & control , Gills/pathology , Gills/parasitology , Gills/drug effects , Cell Line , beta-Glucans/pharmacology , Arginine/pharmacology , Ascorbic Acid/pharmacology , Reactive Oxygen Species/metabolism , Dietary Supplements , Amebiasis/parasitology , Cell Survival/drug effects
2.
PLoS One ; 14(4): e0215478, 2019.
Article in English | MEDLINE | ID: mdl-30990853

ABSTRACT

The infectious salmon anaemia virus (ISAV) is an important pathogen on farmed salmon in Europe. The virus occurs as low- and high virulent variants where the former seem to be a continuous source of new high virulent ISAV. The latter are controlled in Norway by stamping out infected populations while the former are spreading uncontrolled among farmed salmon. Evidence of vertical transmission has been presented, but there is still an ongoing discussion of the importance of circulation of ISAV via salmon brood fish. The only known wild reservoirs are in trout (Salmo trutta) and salmon (Salmo salar). This study provides the first ISAV sequences from wild salmonids in Norway and evaluates the importance of this reservoir with respect to outbreaks of ISA among farmed salmon. Phylogenetic analyses of the surface protein hemagglutinin-esterase gene from nearly all available ISAV from Norway, Faeroe Islands, Scotland, Chile and wild salmonids in Norway show that they group into four major clades. Including virulent variants in the analysis show that they belong in the same four clades supporting the hypothesis that there is a high frequency of transition from low to high virulent variants in farmed populations of salmon. There is little support for a hypothesis suggesting that the wild salmonids feed the virus into farmed populations. This study give support to earlier studies that have documented local horizontal transmission of high virulent ISAV, but the importance of transition from low- to high virulent variants has been underestimated. Evidence of vertical transmission and long distance spreading of ISAV via movement of embryos and smolt is presented. We recommend that the industry focus on removing the low virulent ISAV from the brood fish and that ISAV-free brood fish salmon are kept in closed containment systems (CCS).


Subject(s)
Fish Diseases , Fisheries , Isavirus , Orthomyxoviridae Infections , Salmo salar/virology , Animals , Fish Diseases/genetics , Fish Diseases/transmission , Fish Diseases/virology , Hemagglutinins, Viral/genetics , Isavirus/genetics , Isavirus/pathogenicity , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/transmission , Phylogeny , Viral Fusion Proteins/genetics , Viral Proteins/genetics , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...