Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Vis Sci Technol ; 6(6): 1, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29109907

ABSTRACT

PURPOSE: We introduce a method for determining the impulse response function (IRF) of the ERG derived from responses to temporal white noise (TWN) stimuli. METHODS: This white noise ERG (wnERG) was recorded in participants with normal trichromatic vision to full-field (Ganzfeld) and 39.3° diameter focal stimuli at mesopic and photopic mean luminances and at different TWN contrasts. The IRF was obtained by cross-correlating the TWN stimulus with the wnERG. RESULTS: We show that wnERG recordings are highly repeatable, with good signal-to-noise ratio, and do not lead to blink artifacts. The wnERG resembles a flash ERG waveform with an initial negativity (N1) followed by a positivity (P1), with amplitudes that are linearly related to stimulus contrast. These N1 and N1-P1 components showed commonalties in implicit times with the a- and b-waves of flash ERGs. There was a clear transition from rod- to cone-driven wnERGs at ∼1 photopic cd.m-2. We infer that oscillatory potentials found with the flash ERG, but not the wnERG, may reflect retinal nonlinearities due to the compression of energy into a short time period during a stimulus flash. CONCLUSION: The wnERG provides a new approach to study the physiology of the retina using a stimulation method with adaptation and contrast conditions similar to natural scenes to allow for independent variation of stimulus strength and mean luminance, which is not possible with the conventional flash ERG. TRANSLATIONAL RELEVANCE: The white noise ERG methodology will be of benefit for clinical studies and animal models in the evaluation of hypotheses related to cellular redundancy to understand the effects of disease on specific visual pathways.

2.
Doc Ophthalmol ; 131(2): 85-94, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26286330

ABSTRACT

PURPOSE: To develop a signal processing paradigm for extracting ERG responses to temporal sinusoidal modulation with contrasts ranging from below perceptual threshold to suprathreshold contrasts and estimate the magnitude of intrinsic noise in ERG signals at different stimulus contrasts. METHODS: Photopic test stimuli were generated using a 4-primary Maxwellian view optical system. The 4-primary lights were sinusoidally temporally modulated in-phase (36 Hz; 2.5-50% Michelson contrast). The stimuli were presented in 1-s epochs separated by a 1-ms blank interval and repeated 160 times (160.160-s duration) during the recording of the continuous flicker ERG from the right eye using DTL fibre electrodes. After artefact rejection, the ERG signal was extracted using Fourier transforms in each of the 1-s epochs where a stimulus was presented. The signal processing allows for computation of the intrinsic noise distribution in addition to the signal-to-noise (SNR) ratio. RESULTS: We provide the initial report that the ERG intrinsic noise distribution is independent of stimulus contrast, whereas SNR decreases linearly with decreasing contrast until the noise limit at ~2.5%. The 1-ms blank intervals between epochs de-correlated the ERG signal at the line frequency (50 Hz) and thus increased the SNR of the averaged response. We confirm that response amplitude increases linearly with stimulus contrast. The phase response shows a shallow positive relationship with stimulus contrast. CONCLUSIONS: This new technique will enable recording of intrinsic noise in ERG signals above and below perceptual visual threshold and is suitable for measurement of continuous rod and cone ERGs across a range of temporal frequencies, and post-receptoral processing in the primary retinogeniculate pathways at low stimulus contrasts. The intrinsic noise distribution may have application as a biomarker for detecting changes in disease progression or treatment efficacy.


Subject(s)
Electroretinography/methods , Photoreceptor Cells, Vertebrate/physiology , Signal Transduction/physiology , Signal-To-Noise Ratio , Adult , Artifacts , Female , Fourier Analysis , Humans , Light , Male , Middle Aged , Photic Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL
...