Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Indian J Crit Care Med ; 25(7): 780-784, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34316172

ABSTRACT

INTRODUCTION: Carbapenem-resistant Enterobacteriaceae (CRE) infections have a major effect on mortality as well as healthcare cost. Intensive care units (ICUs) in India, the epicenters for multidrug-resistant organisms, are facing a "postantibiotic era" because of very limited treatment options. A latest beta-lactam/beta-lactamase inhibitor ceftazidime-avibactam (CZA) new has a broad-spectrum antibacterial activity. CZA inhibits class-A and class-C beta-lactamases (as well Klebsiella pneumoniae carbapenemase (KPC)), along with some class-D carbapenems such as OXA-48-like enzymes that are seen in Enterobacteriaceae has recently become available. The current study aimed to assess and present the clinical response and patient outcome with infections due to CRE when treated with CZA alone or in combination with other drugs. MATERIALS AND METHODS: This retrospective study reviews the experience recorded and analyzed at two tertiary care centers including only adult patients with CRE infection who had received CZA alone or in combination with other antibiotics over a period between February 2019 and January 2020. RESULTS: In the period from February 2019 to January 2020, 119 culture-confirmed CRE isolates were tested for Xpert Carba-R. The predominant genetic mechanism was a combination of NDM+OXA-48 in 45/119 (37.81%). Total 40/57 patients received CZA+aztreonam alone or in combination with other drugs with an overall cure rate of 77.5% while the rest 17 received CZA alone in combination with the cure rate of 82.35%. 41/57 (71.92%) patients were in ICU. CONCLUSION: With overall mortality of 21%, these data suggest that CZA is a viable option for patients with CRE infections. To our knowledge, this is the first Indian study reporting CZA data in CRE infections. HOW TO CITE THIS ARTICLE: Nagvekar V, Shah A, Unadkat VP, Chavan A, Kohli R, Hodgar S, et al. Clinical Outcome of Patients on Ceftazidime-Avibactam and Combination Therapy in Carbapenem-resistant Enterobacteriaceae. Indian J Crit Care Med 2021;25(7):780-784.

2.
Comput Biol Chem ; 80: 54-65, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30901601

ABSTRACT

Development of novel, safe and effective drug candidates combating the emerging drug resistance has remained a major focus in the mainstream of anti-tuberculosis research. Here, we inspired to design and synthesize series of new pyridin-4-yl-1,3,4-oxadiazol-2-yl-thio-ethylidene-hydrazinecarbothioamide derivatives as potential anti-tubercular agents. The anti-tubercular bioactive assay demonstrated that the synthesized compounds exhibit potent anti-tubercular activity (MIC = 3.9-7.81 µg/mL) in comparison with reference drugs Rifampicin and Isoniazid.We employed pharmacophore probing approach for the identification of CYP51 as a possible drug target for the synthesized compounds. To understand the preferable binding mode, the synthesized molecules were docked onto the active site of Sterol 14 α-demethylases (CYP51) target. From the binding free energy of the docking results it was revealed that the compounds were effective CYP51 inhibitors and acts as antitubercular agent.


Subject(s)
Antitubercular Agents/pharmacology , Oxadiazoles/pharmacology , Pyridines/pharmacology , Thiosemicarbazones/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Antitubercular Agents/metabolism , Catalytic Domain , Cytochrome P450 Family 51/chemistry , Cytochrome P450 Family 51/metabolism , Drug Design , Free Radical Scavengers/chemical synthesis , Free Radical Scavengers/chemistry , Free Radical Scavengers/metabolism , Free Radical Scavengers/pharmacology , Isoniazid/pharmacology , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Mycobacterium tuberculosis/drug effects , Oxadiazoles/chemical synthesis , Oxadiazoles/chemistry , Oxadiazoles/metabolism , Protein Binding , Pyridines/chemical synthesis , Pyridines/chemistry , Pyridines/metabolism , Rifampin/pharmacology , Structure-Activity Relationship , Thiosemicarbazones/chemical synthesis , Thiosemicarbazones/chemistry , Thiosemicarbazones/metabolism
3.
Comput Biol Chem ; 61: 86-96, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26844536

ABSTRACT

Searching novel, safe and effective anti-inflammatory agents has remained an evolving research enquiry in the mainstream of inflammatory disorders. In the present investigation series of thiazoles bearing pyrazole as a possible pharmacophore were synthesized and assessed for their anti inflammatory activity using in vitro and in vivo methods. In order to decipher the possible anti-inflammatory mechanism of action of the synthesized compounds, cyclooxygenase I and II (COX-I and COX-II) inhibition assays were also carried out. The results obtained clearly focus the significance of compounds 5d, 5h and 5i as selective COX-II inhibitors. Moreover, compound 5h was also identified as a lead molecule for inhibition of the carrageenin induced rat paw edema in animal model studies. Molecular docking results revealed significant interactions of the test compounds with the active site of COX-II, which perhaps can be explored for design and development of novel COX-II selective anti-inflammatory agents.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Pyrazoles/chemistry , Thiazoles/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Male , Rats , Rats, Sprague-Dawley , Spectrometry, Mass, Electrospray Ionization , Spectrophotometry, Infrared
4.
AAPS PharmSciTech ; 17(5): 1030-41, 2016 Oct.
Article in English | MEDLINE | ID: mdl-26729534

ABSTRACT

Synthesis of metal nanoparticles for improving therapeutic index and drug delivery is coming up as an attractive strategy in the mainstream of cancer therapeutic research. In the present study, curcumin-capped copper nanoparticles (CU-NPs) were evaluated as possible inhibitors of in vivo angiogenesis, pro-angiogenic cytokines involved in promoting tumor angiogenesis along with inhibition of cell proliferation and migration of breast cancer cell line MDA-MB-231. The antiangiogenic potential was assessed using in vivo chorioallantoic membrane (CAM) model. 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT)-based cytotoxicity assay was used to assess the effect of CU-NPs against proliferation of breast cancer cell line. The wound healing migration assay was used to evaluate the effects of CU-NPs on the migration ability of breast cancer cell line. Native curcumin (CU) was used as a reference compound for comparison purpose. The result of the present investigation indicates that CU-NPs could not demonstrate impressive antiangiogenic or anticancer activities significantly as compared to native CU. The possible mechanisms of experimental outcomes are discussed in the light of the methods of nanoparticle synthesis in concert with the current state of the art literature.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Breast Neoplasms/drug therapy , Copper/pharmacology , Curcumin/pharmacology , Nanoparticles/administration & dosage , Neovascularization, Pathologic/drug therapy , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Carriers/chemistry , Drug Delivery Systems/methods , Female , Humans
5.
Toxicol Int ; 21(2): 214-21, 2014 May.
Article in English | MEDLINE | ID: mdl-25253934

ABSTRACT

OBJECTIVE: The present study was designed to elucidate the impact of oral administration of aluminium chloride for 28 days with respect to oxidative stress in the cerebral cortex of female rats. Further, to investigate the potentials of Coenzyme (Co) Q10 (4, 8, and 12 mg/kg, i.p.) in mitigating the detrimental changes. MATERIALS AND METHODS: Biochemical estimations of cerebral lipid peroxidation (LPO), reduced glutathione (GSH), vitamin E and activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were carried out after 28 days of aluminium chloride (AlCl3) and Co Q10 exposures along with histopathological examination of cerebral cortex of the rats. RESULTS: Subacute exposure to AlCl3(5 mg/kg) led to significant decrease in levels of GSH, vitamin E and activities of SOD, CAT, GPx, and an increase in LPO of cerebral cortex. These aberrations were restored by Co Q10 (12 mg/kg, i.p.). This protection offered was comparable to that of L-deprenyl (1 mg/kg, i.p.) which served as a reference standard. Histopathological evaluations confirmed that the normal cerebral morphology was maintained by Co Q10. CONCLUSION: Thus, AlCl3 exposure hampers the activities of various antioxidant enzymes and induces oxidative stress in cerebral cortex of female Wistar rats. Supplementation with intraperitoneal Co Q10 abrogated these deleterious effects of AlCl3.

6.
Environ Health Toxicol ; 29: e2014001, 2014.
Article in English | MEDLINE | ID: mdl-24683537

ABSTRACT

OBJECTIVES: The present subacute study was designed to evaluate the effect of coenzyme Q 10 (CoQ10) in the 28 days aroclor 1254 exposure induced oxidative stress in mice brain. METHODS: Biochemical estimations of brain lipid peroxidation (LPO), reduced glutathione (GSH), and activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and acetyl cholinesterase (AChE), and histopathological investigations of brain tissue were carried out. RESULTS: Oral exposure of aroclor 1254 (5 mg/kg) led to significant decrease in levels of GSH, and activities of SOD, CAT, GPx, and AChE, and increase in LPO. These aberrations were restored by CoQ10 (10 mg/kg, intraperitoneal injection [IP]). This protection offered was comparable to that of L-deprenyl (1 mg/kg, IP) which served as a reference standard. CONCLUSIONS: Aroclor 1254 exposure hampers the activities of various antioxidant enzymes and induces oxidative stress in the brains of Swiss albino mice. Supplementation of CoQ10 abrogates these deleterious effects of aroclor 1254. CoQ10 also apparently enhanced acetyl cholinesterase activity which reflects its influence on the cholinergic system.

SELECTION OF CITATIONS
SEARCH DETAIL
...