Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Microbiol ; 12: 638003, 2021.
Article in English | MEDLINE | ID: mdl-33796089

ABSTRACT

Micro-organisms colonized the world before the multi-cellular organisms evolved. With the advent of microscopy, their existence became evident to the mankind and also the vast processes they regulate, that are in direct interest of the human beings. One such process that intrigued the researchers is the ability to grow in presence of toxic metals. The process seemed to be simple with the metal ions being sequestrated into the inclusion bodies or cell surfaces enabling the conversion into nontoxic nanostructures. However, the discovery of genome sequencing techniques highlighted the genetic makeup of these microbes as a quintessential aspect of these phenomena. The findings of metal resistance genes (MRG) in these microbes showed a rather complex regulation of these processes. Since most of these MRGs are plasmid encoded they can be transferred horizontally. With the discovery of nanoparticles and their many applications from polymer chemistry to drug delivery, the demand for innovative techniques of nanoparticle synthesis increased dramatically. It is now established that microbial synthesis of nanoparticles provides numerous advantages over the existing chemical methods. However, it is the explicit use of biotechnology, molecular biology, metabolic engineering, synthetic biology, and genetic engineering tools that revolutionized the world of microbial nanotechnology. Detailed study of the micro and even nanolevel assembly of microbial life also intrigued biologists and engineers to generate molecular motors that mimic bacterial flagellar motor. In this review, we highlight the importance and tremendous hidden potential of bio-engineering tools in exploiting the area of microbial nanoparticle synthesis. We also highlight the application oriented specific modulations that can be done in the stages involved in the synthesis of these nanoparticles. Finally, the role of these nanoparticles in the natural ecosystem is also addressed.

2.
Indian J Microbiol ; 57(4): 499-502, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29151652

ABSTRACT

Four (1, 2, 4 and 6) synthetic quaternary ammonium derivatives of pyranochromenones and (coumarinyloxy)acetamides were synthesized and investigated for their antimicrobial efficacy on MRSA (Methicillin-resistant Staphylococcus aureus), and multi-drug resistant Pseudomonas aeruginosa, Salmonella enteritidis and Mycobacterium tuberculosis H37Rv strain. One of the four compounds screened i.e. N,N,N-triethyl-10-((4,8,8-trimethyl-2-oxo-2,6,7,8-tetrahydropyrano[3,2-g]chromen-10-yl)oxy)decan-1-aminium bromide (1), demonstrated significant activity against S. aureus, P. aeruginosa and M. tuberculosis with MIC value of 16, 35, and 15.62 µg/ml respectively. The cytotoxicity evaluation of compound 1 on A549 cell lines showed it to be a safe antimicrobial molecule, TEM study suggested that the compound led to the rupture of the bacterial cell walls.

3.
Arch Pharm (Weinheim) ; 350(8)2017 Aug.
Article in English | MEDLINE | ID: mdl-28699213

ABSTRACT

Alzheimer's disease (AD), a neurodegenerative disorder, is a serious medical issue worldwide with drastic social consequences. Inhibition of cholinesterase is one of the rational and effective approaches to retard the symptoms of AD and, hence, consistent efforts are being made to develop efficient anti-cholinesterase agents. In pursuit of this, a series of 19 acetamide derivatives of chromen-2-ones were synthesized and evaluated for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory potential. All the synthesized compounds exhibited significant anti-AChE and anti-BChE activity, with IC50 values in the range of 0.24-10.19 µM and 0.64-30.08 µM, respectively, using donepezil hydrochloride as the standard. Out of 19 compounds screened, 3 compounds, viz. 22, 40, and 43, caused 50% inhibition of AChE at 0.24, 0.25, and 0.25 µM, respectively. A kinetic study revealed them to be mixed-type inhibitors, binding with both the CAS and PAS sites of AChE. The above-selected compounds were found to be effective inhibitors of AChE-induced and self-mediated Aß1-42 aggregation. ADMET predictions demonstrated that these compounds may possess suitable blood-brain barrier (BBB) permeability. Hemolytic assay results revealed that these compounds did not lyse human RBCs up to a thousand times of their IC50 value. MTT assays performed for the shortlisted compounds showed them to be negligibly toxic after 24 h of treatment with the SH-SY5Y neuroblastoma cells. These results provide insights for further optimization of the scaffolds for designing the next generation of compounds as lead cholinesterase inhibitors.


Subject(s)
Acetylcholinesterase/drug effects , Butyrylcholinesterase/drug effects , Cholinesterase Inhibitors/pharmacology , Chromones/pharmacology , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Animals , Blood-Brain Barrier/metabolism , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Chromones/chemical synthesis , Chromones/chemistry , Donepezil , Electrophorus/metabolism , Erythrocytes/drug effects , Hemolysis/drug effects , Humans , Indans/pharmacology , Inhibitory Concentration 50 , Neuroblastoma/metabolism , Piperidines/pharmacology
4.
Tuberculosis (Edinb) ; 95(5): 599-607, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26096160

ABSTRACT

Multiple strategies evolved by Mycobacterium tuberculosis (M. tb) have contributed to its successful prevalence. We previously identified specific genes in the cysteine protease and calcium-calmodulin pathways that regulated immune responses from dendritic cells (DCs). In this study we have characterized the role of neddylation in regulating various defense responses from DCs during mycobacterial infection. Neddylation is a process that is similar to ubiquitination. It however has its own enzyme machinery. It is coupled to ubiquitination and is important for maintaining cellular homeostasis. Here we show that stimulation of DCs with M. tb antigens Rv2463 and Rv3416 as well as infection with live M. tb modulates the expression levels of key proteins in the neddylation pathway. Further, stimulation with the two antigens promoted the association of NEDD8 with its target Cullin-1. The modulation in the expression levels of NEDD8 and SENtrin specific Protein 8 (SENP8) by the two antigens was in a calcium, MAPK and TLR dependent mechanism. Further, knockdown of specific genes of neddylation promoted the generation of oxidative burst, promoted phagolysosome fusion in mycobacteria infected DCs and induced higher expression of autophagy and apoptosis associated proteins in DCs. These results point toward a unique strategy employed by mycobacteria and its antigens towards immune suppression via modulating neddylation in DCs.


Subject(s)
Dendritic Cells/metabolism , Mycobacterium tuberculosis/pathogenicity , Protein Processing, Post-Translational , Tuberculosis/metabolism , Ubiquitins/metabolism , Animals , Antigens, Bacterial/immunology , Apoptosis , Autophagy , Calcium Signaling , Cells, Cultured , Cullin Proteins/metabolism , Dendritic Cells/immunology , Dendritic Cells/microbiology , Female , Host-Pathogen Interactions , Mice, Inbred BALB C , Mitogen-Activated Protein Kinases/metabolism , Mycobacterium tuberculosis/immunology , NEDD8 Protein , Phagocytosis , RNA Interference , Respiratory Burst , Toll-Like Receptors/metabolism , Transfection , Tuberculosis/genetics , Tuberculosis/immunology , Tuberculosis/microbiology , Ubiquitination , Ubiquitins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...