Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 10(19): 11507-11516, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-35495338

ABSTRACT

Supported ruthenium was used in the liquid phase catalytic transfer hydrogenation of furfural. To improve the stability of Ru against leaching, phosphorous was introduced on a Ru/Al2O3 based catalyst upon impregnation with ammonium hypophosphite followed by either reduction or calcination to study the effect of phosphorous on the physico-chemical properties of the active phase. Characterization using X-ray diffraction, solid state 31P nuclear magnetic resonance spectroscopy, X-ray absorption spectroscopy, temperature programmed reduction with H2, infrared spectroscopy of pyridine adsorption from the liquid phase and transmission electron microscopy indicated that phosphorous induces a high dispersion of Ru, promotes Ru reducibility and is responsible for the formation of acid species of Brønsted character. As a result, the phosphorous-based catalyst obtained after reduction was more active for catalytic transfer hydrogenation of furfural and more stable against Ru leaching under these conditions than a benchmark Ru catalyst supported on activated carbon.

2.
Environ Sci Technol ; 52(22): 13381-13390, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30351026

ABSTRACT

Log wood burning is a significant source of volatile organic compounds including aromatic hydrocarbons (ArHC). ArHC are harmful, are reactive in the ambient atmosphere, and are important secondary organic aerosol (SOA) precursors. Consequently, SOA represents a major fraction of the sub-micron organic aerosol pollution from log wood burning. ArHC reduction is thus critical in the mitigation of adverse health and environmental effects of log wood burning. In this study, two Pt-based catalytic converters were prepared and tested for the mitigation of real-world log wood burning emissions, including ArHC and SOA formation, as well as toxic carbon monoxide and methane, a greenhouse gas. Substantial removal of mono- and polycyclic ArHC and phenolic compounds was achieved with both catalysts operated at realistic chimney temperatures (50% conversion was achieved at 200 and 300 °C for non-methane hydrocarbons in our experiments for Pt/Al2O3 and Pt/CeO2-Al2O3, respectively). The catalytically cleaned emissions exhibited a substantially reduced SOA formation already at temperatures as low as 185-310 °C. This reduces the sub-micron PM burden of log wood burning significantly. Thus, catalytic converters can effectively reduce primary and secondary log wood burning pollutants and, thereby, their adverse health impacts and environmental effects.


Subject(s)
Air Pollutants , Hydrocarbons, Aromatic , Aerosols , Particulate Matter , Wood
3.
Phys Chem Chem Phys ; 18(42): 29268-29277, 2016 Oct 26.
Article in English | MEDLINE | ID: mdl-27731446

ABSTRACT

In situ time-resolved spectroscopic examination of catalysts based on well dispersed nanoparticles on metal oxides under transient conditions significantly facilitates the elucidation of reaction mechanisms. In this contribution, we demonstrate the level of structural information that can be obtained using high-energy resolution off-resonant spectroscopy (HEROS) to study 1.3 wt% Pt/Al2O3 and 1.3 wt% Pt/20 wt% CeO2/Al2O3 catalysts subjected to redox pulsing. First, HEROS is compared with XANES in a temperature programmed reduction experiment to demonstrate the increased sensitivity and time resolution of HEROS. Second, modulation excitation spectroscopy is exploited by redox pulsing to enhance the sensitivity of HEROS to structural changes by the application of phase sensitive detection (PSD) to the time-resolved HEROS data set. The HEROS measurements were complemented by resonant X-ray emission (RXES) and diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy measurements performed under identical conditions and in a single reactor cell in order to probe different aspects of the catalyst materials under the selected experimental conditions.

4.
Chimia (Aarau) ; 69(10): 608-13, 2015.
Article in English | MEDLINE | ID: mdl-26598405

ABSTRACT

Energy from woody biomass could supplement renewable energy production towards the replacement of fossil fuels. A multi-stage process involving gasification of wood and then catalytic transformation of the producer gas to synthetic natural gas (SNG) represents progress in this direction. SNG can be transported and distributed through the existing pipeline grid, which is advantageous from an economical point of view. Therefore, CO methanation is attracting a great deal of attention and much research effort is focusing on the understanding of the process steps and its further development. This short review summarizes recent efforts at Paul Scherrer Institute on the understanding of the reaction mechanism, the catalyst deactivation, and the development of catalytic materials with benign properties for CO methanation.

5.
J Nanosci Nanotechnol ; 15(5): 3530-9, 2015 May.
Article in English | MEDLINE | ID: mdl-26504973

ABSTRACT

The facile one-pot synthesis of CeO2-based catalysts has been developed to prepare a relatively large amount of nanopowders with relevant catalytic activity towards CO oxidation. The method consists of a two-steps process carried out in ethylene glycol: in the first step, 5 nm well-crystallized pure CeO2 is prepared. In a subsequent second step, a salt of a noble metal is added to the CeO2 suspension and the deposition of the noble metal on the nanocrystalline CeO2 is induced by heating. Two catalysts were prepared: Pt/CeO2 and Au/CeO2. The as-prepared catalysts, the thermally treated catalysts, as well as the pure CeO2, are characterized by XRD, TGA, XPS, FTIR, HR-TEM, STEM, particle size distribution, and N2-physisorption. In spite of the identical preparation protocol, Au and Pt behave in a completely different way: Au forms rather large particles, most of them with triangular shape, easily identifiable and dispersed in the CeO2 matrix. In contrast, Pt was not identified as isolated particles. The high resolution X-ray diffraction carried out on the Pt/CeO2 thermally treated sample (500 degrees C for 1 h) shows a significant CeO2 lattice shrinkage, which can be interpreted as an at least partial incorporation of Pt into the CeO2 crystal lattice. Moreover, only Pt2+ and Pt4+ species were identified by XPS. In literature, the incorporation of Pt into the CeO2 lattice is supported by first-principle calculations and experimentally demonstrated only by combustion synthesis methods. To the best of our knowledge this is the first report where ionically dispersed Pt into the CeO2 lattice is obtained via a liquid synthesis method. The thermally treated Pt/CeO2 sample revealed good activity with 50% CO conversion at almost room temperature.

6.
J Am Chem Soc ; 135(51): 19071-4, 2013 Dec 26.
Article in English | MEDLINE | ID: mdl-24328233

ABSTRACT

We report an in situ time-resolved high-energy resolution off-resonant spectroscopy study with subsecond resolution providing insight into the oxidation and reduction steps of a Pt catalyst during CO oxidation. The study shows that the slow oxidation step is composed of two characteristic stages, namely, dissociative adsorption of oxygen followed by partial oxidation of Pt subsurface. By comparing the experimental spectra with theoretical calculations, we found that the intermediate chemisorbed O on Pt is adsorbed on atop position, which suggests surface poisoning by CO or surface reconstruction.

7.
Front Chem ; 1: 13, 2013.
Article in English | MEDLINE | ID: mdl-24790942

ABSTRACT

A new kind of electrochemical catalyst based on a Pt porous catalyst film deposited on a ß″-Al2O3 ceramic Ag(+) conductor was developed and evaluated during propane oxidation. It was observed that, upon anodic polarization, the rate of propane combustion was significantly electropromoted up to 400%. Moreover, for the first time, exponential increase of the catalytic rate was evidenced during galvanostatic transient experiment in excellent agreement with EPOC equation.

SELECTION OF CITATIONS
SEARCH DETAIL
...