Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Biochem Nutr ; 70(3): 231-239, 2022 May.
Article in English | MEDLINE | ID: mdl-35692673

ABSTRACT

Coenzyme Q10 is an important molecule for mitochondrial respiration and as an antioxidant. Maintenance of the ovum in a good condition is considered to be important for successful fertilization and development, which has been reported to be promoted by coenzyme Q10. In this study, we investigated the level of coenzyme Q10 during ovum fertilization and maturation. We attempted to analyze coenzyme Q10 levels during ovum development in species that use coenzyme Q10 but not coenzyme Q9. It was shown that medaka produces coenzyme Q10. We then measured the amount of coenzyme Q10 after fertilization of medaka ovum and found that it increased. The amount of free cholesterol biosynthesized from acetyl CoA as well as coenzyme Q10 increased during development, but the increase in coenzyme Q10 was more pronounced. The mRNA expression level of coq9 also increased during embryonic development, but the mRNA expression levels of other coenzyme Q10 synthases did not. These results suggest that the coq9 gene is upregulated during the development of medaka ovum after fertilization, resulting in an increase in the amount of coenzyme Q10 in the ovum. Medaka, which like humans has coenzyme Q10, is expected to become a model animal for coenzyme Q10 research.

2.
Int J Mol Sci ; 22(4)2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33672879

ABSTRACT

Osteosarcoma has a poor survival rate due to relapse and metastasis. Zoledronic acid (ZOL), an anti-resorptive and anti-tumor agent, is used for treating osteosarcoma. Delivery of ZOL to the target region is difficult due to its high binding affinity to bone minerals. This study developed a novel treatment for osteosarcoma by delivering ZOL to the target region locally and sustainably. In this study, we fabricated a novel bone substitute by loading ZOL on ß-tricalcium phosphate (ß-TCP). The ZOL-loaded ß-TCP (ZOL/ß-TCP) would be expected to express the inhibitory effects via both bound-ZOL (bound to ß-TCP) and free-ZOL (release from ZOL/ß-TCP). To explore the ability to release ZOL from the ZOL/ß-TCP, the amount of released ZOL was measured. The released profile indicates that a small amount of ZOL was released, and most of it remained on the ß-TCP. Our data showed that ZOL/ß-TCP could successfully express the effects of ZOL via both bound-ZOL and free-ZOL. In addition, we examined the biological effects of bound/free-ZOL using osteosarcoma and osteoclasts (target cells). The results showed that two states of ZOL (bound/free) inhibit target cell activities. As a result, ZOL/ß-TCP is a promising candidate for application as a novel bone substitute.


Subject(s)
Calcium Phosphates/pharmacology , Cell Proliferation/drug effects , Osteoclasts/metabolism , Osteosarcoma/metabolism , Zoledronic Acid/pharmacology , Animals , Bone Substitutes/chemistry , Bone Substitutes/pharmacokinetics , Bone Substitutes/pharmacology , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacokinetics , Cell Differentiation/drug effects , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Cells, Cultured , Culture Media, Conditioned/pharmacology , Drug Liberation , Humans , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice, Inbred C57BL , Osteosarcoma/pathology , Zoledronic Acid/chemistry , Zoledronic Acid/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...