Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 26(19): 25178-25187, 2018 Sep 17.
Article in English | MEDLINE | ID: mdl-30469623

ABSTRACT

We propose a plasmonic color filter consisting of a single aperture surrounded by concentric periodic corrugations for simultaneous imaging of a spectral range from the visible to the near-infrared. The incident light coupled with surface plasmons propagates through the sub-wavelength aperture as beaming light. The beaming light transmission is able to suppress the spatial color cross-talk between the pixels in an image sensor. We analyzed the transmission characteristics of a plasmonic color filter with periodic corrugations in a silver thin film by using the finite-difference time-domain algorithm. We demonstrated a multi-band transmission wavelength selectivity, of about 100 nm, for the spectral bandwidth ranging from visible to near-infrared. The simultaneous discrimination of visible and near-infrared light with a high color purity by the plasmonic color filter achieves both improved image recognition and smaller system-size compared with conventional systems, which is particularly important for applications such as vehicle-mounted cameras, security, and biological tissue engineering.

2.
Sensors (Basel) ; 18(6)2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29865217

ABSTRACT

In this paper, we report on the development of a monolithic active pixel sensor for X-ray imaging using 0.2 µm fully depleted silicon-on-insulator (SOI)-based technology to support next generation astronomical satellite missions. Detail regarding low-noise dual-gain SOI based pixels with a charge sensitive amplifier and pinned depleted diode sensor structure is presented. The proposed multi-well sensor structure underneath the fully-depleted SOI allows the design of a detector with low node capacitance and high charge collection efficiency. Configurations for achieving very high charge-to-voltage conversion gain of 52 µV/e- and 187 µV/e- are demonstrated. Furthermore, in-pixel dual gain selection is used for low-noise and wide dynamic range X-ray energy detection. A technique to improve the noise performance by removing correlated system noise leads to an improvement in the spectroscopic performance of the measured X-ray energy. Taken together, the implemented chip has low dark current (44.8 pA/cm² at -30 °C), improved noise performance (8.5 e- rms for high gain and 11.7 e- rms for low gain), and better energy resolution of 2.89% (171 eV FWHM) at 5.9 keV using 55Fe and 1.67% (234 eV FWHM) at 13.95 keV using 241Am.

3.
Sensors (Basel) ; 18(1)2017 Dec 23.
Article in English | MEDLINE | ID: mdl-29295523

ABSTRACT

This paper presents a novel full-depletion Si X-ray detector based on silicon-on-insulator pixel (SOIPIX) technology using a pinned depleted diode structure, named the SOIPIX-PDD. The SOIPIX-PDD greatly reduces stray capacitance at the charge sensing node, the dark current of the detector, and capacitive coupling between the sensing node and SOI circuits. These features of the SOIPIX-PDD lead to low read noise, resulting high X-ray energy resolution and stable operation of the pixel. The back-gate surface pinning structure using neutralized p-well at the back-gate surface and depleted n-well underneath the p-well for all the pixel area other than the charge sensing node is also essential for preventing hole injection from the p-well by making the potential barrier to hole, reducing dark current from the Si-SiO2 interface and creating lateral drift field to gather signal electrons in the pixel area into the small charge sensing node. A prototype chip using 0.2 µm SOI technology shows very low readout noise of 11.0 e-rms, low dark current density of 56 pA/cm² at -35 °C and the energy resolution of 200 eV(FWHM) at 5.9 keV and 280 eV (FWHM) at 13.95 keV.

SELECTION OF CITATIONS
SEARCH DETAIL
...